Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 253, Pages 81–87 (Mi tm85)  

This article is cited in 1 scientific paper (total in 1 paper)

Contact Quasiconformal Immersions

V. A. Zorich

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (158 kB) Citations (1)
References:
Abstract: Contact immersions of contact manifolds endowed with the associated Carnot–Carathéodory (CC) metric (for example, immersions of the Heisenberg group $H^3\sim \mathbb R^3_{\mathrm {CC}}$ in itself) are considered. It is assumed that the manifolds have the same dimension and the immersions are quasiconformal with respect to the CC metric. The main assertion is as follows: A quasiconformal immersion of the Heisenberg group in itself, just as a quasiconformal immersion of any contact manifold of conformally parabolic type in a simply connected contact manifold, is globally injective; i.e., such an immersion is an embedding, which, in addition, is surjective in the case of the Heisenberg group. Thus, the global homeomorphism theorem, which is well known in the space theory of quasiconformal mappings, also holds in the contact case.
Received in October 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 253, Pages 71–77
DOI: https://doi.org/10.1134/S0081543806020076
Bibliographic databases:
UDC: 517.54+514.763
Language: Russian
Citation: V. A. Zorich, “Contact Quasiconformal Immersions”, Complex analysis and applications, Collected papers, Trudy Mat. Inst. Steklova, 253, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 81–87; Proc. Steklov Inst. Math., 253 (2006), 71–77
Citation in format AMSBIB
\Bibitem{Zor06}
\by V.~A.~Zorich
\paper Contact Quasiconformal Immersions
\inbook Complex analysis and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 253
\pages 81--87
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm85}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338689}
\zmath{https://zbmath.org/?q=an:1351.53074}
\elib{https://elibrary.ru/item.asp?id=13517516}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 253
\pages 71--77
\crossref{https://doi.org/10.1134/S0081543806020076}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748294156}
Linking options:
  • https://www.mathnet.ru/eng/tm85
  • https://www.mathnet.ru/eng/tm/v253/p81
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :114
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024