Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 253, Pages 46–60 (Mi tm82)  

This article is cited in 19 scientific papers (total in 19 papers)

Remarks on the Local Version of the Inverse Scattering Method

A. V. Domrin

M. V. Lomonosov Moscow State University
References:
Abstract: It is very likely that all local holomorphic solutions of integrable $(1+1)$-dimensional parabolic-type evolution equations can be obtained from the zero solution by formal gauge transformations that belong (as formal power series) to appropriate Gevrey classes. We describe in detail the construction of solutions by means of convergent gauge transformations and prove an assertion converse to the above conjecture; namely, we suggest a simple necessary condition for the existence of a local holomorphic solution to the Cauchy problem for the evolution equations under consideration in terms of scattering data of initial conditions.
Received in October 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 253, Pages 37–50
DOI: https://doi.org/10.1134/S0081543806020040
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: A. V. Domrin, “Remarks on the Local Version of the Inverse Scattering Method”, Complex analysis and applications, Collected papers, Trudy Mat. Inst. Steklova, 253, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 46–60; Proc. Steklov Inst. Math., 253 (2006), 37–50
Citation in format AMSBIB
\Bibitem{Dom06}
\by A.~V.~Domrin
\paper Remarks on the Local Version of the Inverse Scattering Method
\inbook Complex analysis and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 253
\pages 46--60
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm82}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338686}
\zmath{https://zbmath.org/?q=an:1351.35096}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 253
\pages 37--50
\crossref{https://doi.org/10.1134/S0081543806020040}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748328040}
Linking options:
  • https://www.mathnet.ru/eng/tm82
  • https://www.mathnet.ru/eng/tm/v253/p46
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:632
    Full-text PDF :166
    References:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024