|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Volume 265, Pages 19–35
(Mi tm819)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
Multidimensional Ultrametric Pseudodifferential Equations
S. Albeverioab, S. V. Kozyrevc a Institut für Angewandte Mathematik, Universität Bonn, Bonn, Germany
b Interdisziplinäres Zentrum für Komplexe Systeme, Universität Bonn, Bonn, Germany
c Steklov Mathematical Institute, Moscow, Russia
Abstract:
We develop an analysis of wavelets and pseudodifferential operators on multidimensional ultrametric spaces which are defined as products of locally compact ultrametric spaces. We introduce bases of wavelets, spaces of generalized functions and the space $D'_0(X)$ of generalized functions on a multidimensional ultrametric space. We also consider some family of pseudodifferential operators on multidimensional ultrametric spaces. The notions of Cauchy problem for ultrametric pseudodifferential equations and of ultrametric characteristics are introduced. We prove an existence theorem and describe all solutions for the Cauchy problem (an analog of the Kovalevskaya theorem).
Received in December 2008
Citation:
S. Albeverio, S. V. Kozyrev, “Multidimensional Ultrametric Pseudodifferential Equations”, Selected topics of mathematical physics and $p$-adic analysis, Collected papers, Trudy Mat. Inst. Steklova, 265, MAIK Nauka/Interperiodica, Moscow, 2009, 19–35; Proc. Steklov Inst. Math., 265 (2009), 13–29
Linking options:
https://www.mathnet.ru/eng/tm819 https://www.mathnet.ru/eng/tm/v265/p19
|
|