Abstract:
Using Galois theory, we explicitly construct absolutely simple (principally polarized) Prym varieties that are not isomorphic to jacobians of curves even if we ignore the polarizations.
Citation:
Yu. G. Zarhin, “Absolutely Simple Prymians of Trigonal Curves”, Multidimensional algebraic geometry, Collected papers. Dedicated to the Memory of Vasilii Alekseevich Iskovskikh, Corresponding Member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 264, MAIK Nauka/Interperiodica, Moscow, 2009, 212–223; Proc. Steklov Inst. Math., 264 (2009), 204–215
\Bibitem{Zar09}
\by Yu.~G.~Zarhin
\paper Absolutely Simple Prymians of Trigonal Curves
\inbook Multidimensional algebraic geometry
\bookinfo Collected papers. Dedicated to the Memory of Vasilii Alekseevich Iskovskikh, Corresponding Member of the Russian Academy of Sciences
\serial Trudy Mat. Inst. Steklova
\yr 2009
\vol 264
\pages 212--223
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm812}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2590849}
\elib{https://elibrary.ru/item.asp?id=11807031}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2009
\vol 264
\pages 204--215
\crossref{https://doi.org/10.1134/S0081543809010210}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265834800020}
\elib{https://elibrary.ru/item.asp?id=13604080}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65749111468}
Linking options:
https://www.mathnet.ru/eng/tm812
https://www.mathnet.ru/eng/tm/v264/p212
This publication is cited in the following 2 articles:
Zarhin Yu.G., “Endomorphism Algebras of Abelian Varieties With Special Reference to Superelliptic Jacobians”, Geometry, Algebra, Number Theory, and Their Information Technology Applications, Springer Proceedings in Mathematics & Statistics, 251, eds. Akbary A., Gun S., Springer, 2018, 477–528
He G., Geng X., Wu L., “Algebro-Geometric Quasi-Periodic Solutions to the Three-Wave Resonant Interaction Hierarchy”, SIAM J. Math. Anal., 46:2 (2014), 1348–1384