Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 253, Pages 30–45 (Mi tm81)  

This article is cited in 17 scientific papers (total in 17 papers)

The Envelope of Holomorphy of a Model Third-Degree Surface and the Rigidity Phenomenon

R. V. Gammel', I. G. Kossovskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The structures of the graded Lie algebra $\mathop{\mathrm{aut}}Q$ of infinitesimal automorphisms of a cubic (a model surface in $\mathbb C^N$) and the corresponding group $\mathop{\mathrm{Aut}}Q$ of its holomorphic automorphisms are studied. It is proved that for any nondegenerate cubic, the positively graded components of the algebra $\mathop{\mathrm{aut}}Q$ are trivial and, as a consequence, $\mathop{\mathrm{Aut}}Q$ has no subgroups consisting of nonlinear automorphisms of the cubic that preserve the origin (the so-called rigidity phenomenon). In the course of the proof, the envelope of holomorphy for a nondegenerate cubic is constructed and shown to be a cylinder with respect to the cubic variable whose base is a Siegel domain of the second kind.
Received in December 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 253, Pages 22–36
DOI: https://doi.org/10.1134/S0081543806020039
Bibliographic databases:
UDC: 517.55+514.748
Language: Russian
Citation: R. V. Gammel', I. G. Kossovskii, “The Envelope of Holomorphy of a Model Third-Degree Surface and the Rigidity Phenomenon”, Complex analysis and applications, Collected papers, Trudy Mat. Inst. Steklova, 253, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 30–45; Proc. Steklov Inst. Math., 253 (2006), 22–36
Citation in format AMSBIB
\Bibitem{GamKos06}
\by R.~V.~Gammel', I.~G.~Kossovskii
\paper The Envelope of Holomorphy of a~Model Third-Degree Surface and the Rigidity Phenomenon
\inbook Complex analysis and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 253
\pages 30--45
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm81}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338685}
\zmath{https://zbmath.org/?q=an:1351.32059}
\elib{https://elibrary.ru/item.asp?id=13528362}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 253
\pages 22--36
\crossref{https://doi.org/10.1134/S0081543806020039}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748328043}
Linking options:
  • https://www.mathnet.ru/eng/tm81
  • https://www.mathnet.ru/eng/tm/v253/p30
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:410
    Full-text PDF :96
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024