Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2008, Volume 263, Pages 251–271 (Mi tm795)  

This article is cited in 8 scientific papers (total in 9 papers)

Minimal Peano Curve

E. V. Shchepina, K. E. Baumanb

a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (269 kB) Citations (9)
References:
Abstract: A Peano curve $p(x)$ with maximum square-to-linear ratio $\frac{|p(x)-p(y)|^2}{|x-y|}$ equal to $5\frac23$ is constructed; this ratio is smaller than that of the classical Peano–Hilbert curve, whose maximum square-to-linear ratio is 6. The curve constructed is of fractal genus 9 (i.e., it is decomposed into nine fragments that are similar to the whole curve) and of diagonal type (i.e., it intersects a square starting from one corner and ending at the opposite corner). It is proved that this curve is a unique (up to isometry) regular diagonal Peano curve of fractal genus 9 whose maximum square-to-linear ratio is less than 6. A theory is developed that allows one to find the maximum square-to-linear ratio of a regular Peano curve on the basis of computer calculations.
Received in April 2008
English version:
Proceedings of the Steklov Institute of Mathematics, 2008, Volume 263, Pages 236–256
DOI: https://doi.org/10.1134/S0081543808040172
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: E. V. Shchepin, K. E. Bauman, “Minimal Peano Curve”, Geometry, topology, and mathematical physics. I, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 263, MAIK Nauka/Interperiodica, Moscow, 2008, 251–271; Proc. Steklov Inst. Math., 263 (2008), 236–256
Citation in format AMSBIB
\Bibitem{ShcBau08}
\by E.~V.~Shchepin, K.~E.~Bauman
\paper Minimal Peano Curve
\inbook Geometry, topology, and mathematical physics.~I
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 263
\pages 251--271
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm795}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2599383}
\zmath{https://zbmath.org/?q=an:1201.37061}
\elib{https://elibrary.ru/item.asp?id=11640646}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 263
\pages 236--256
\crossref{https://doi.org/10.1134/S0081543808040172}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263177700016}
\elib{https://elibrary.ru/item.asp?id=13584657}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59849090436}
Linking options:
  • https://www.mathnet.ru/eng/tm795
  • https://www.mathnet.ru/eng/tm/v263/p251
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:914
    Full-text PDF :164
    References:98
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025