Abstract:
Delsarte's method and its extensions allow one to consider the upper bound problem for codes in two-point homogeneous spaces as a linear programming problem with perhaps infinitely many variables, which are the distance distribution. We show that using as variables power sums of distances, this problem can be considered as a finite semidefinite programming problem. This method allows one to improve some linear programming upper bounds. In particular, we obtain new bounds of one-sided kissing numbers.
Citation:
O. R. Musin, “Bounds for Codes by Semidefinite Programming”, Geometry, topology, and mathematical physics. I, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 263, MAIK Nauka/Interperiodica, Moscow, 2008, 143–158; Proc. Steklov Inst. Math., 263 (2008), 134–149
\Bibitem{Mus08}
\by O.~R.~Musin
\paper Bounds for Codes by Semidefinite Programming
\inbook Geometry, topology, and mathematical physics.~I
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 263
\pages 143--158
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm789}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2599377}
\zmath{https://zbmath.org/?q=an:1178.90269}
\elib{https://elibrary.ru/item.asp?id=11640640}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 263
\pages 134--149
\crossref{https://doi.org/10.1134/S0081543808040111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263177700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59849083559}
Linking options:
https://www.mathnet.ru/eng/tm789
https://www.mathnet.ru/eng/tm/v263/p143
This publication is cited in the following 9 articles:
Xavier Emery, Ana Paula Peron, Emilio Porcu, “A catalogue of nonseparable positive semidefinite kernels on the product of two spheres”, Stoch Environ Res Risk Assess, 37:4 (2023), 1497
Musin O.R., “Towards a Proof of the 24-Cell Conjecture”, Acta Math. Hung., 155:1 (2018), 184–199
Konrad J. Swanepoel, Bolyai Society Mathematical Studies, 27, New Trends in Intuitive Geometry, 2018, 407
Oleg R. Musin, Bolyai Society Mathematical Studies, 27, New Trends in Intuitive Geometry, 2018, 321
Okuda T., Yu W.-H., Eur. J. Comb., 53 (2016), 96–103
O. R. Musin, A. S. Tarasov, “Enumeration of irreducible contact graphs on the sphere”, J. Math. Sci., 203:6 (2014), 837–850
Musin O.R., “Positive Definite Functions in Distance Geometry”, European Congress of Mathematics 2008, ed. Ran A. Riele H. Wiegerinck J., Eur. Math. Soc., 2010, 115–134
Musin O.R., “Bounds for codes via semidefinite programming”, 2009 Information Theory and Applications Workshop, 2009, 234–236
O.R. Musin, 2009 Information Theory and Applications Workshop, 2009, 237