Abstract:
Nonlinear control systems possessing the flatness property are encountered in many applied mathematical models. In this paper, a trajectory survival problem is considered for a specific nonlinear system that possesses the above property. A method based on the properties of the system is proposed for constructing a control that solves the trajectory survival problem when the controlled object moves to the goal set within a bounding set containing an obstacle. Results of numerical calculations of the control and the trajectory of a system with a given initial position are presented.
Citation:
L. N. Luk'yanova, “On the Solution of the Trajectory Survival Problem for a Nonlinear Dynamical System”, Optimal control, Collected papers. Dedicated to professor Viktor Ivanovich Blagodatskikh on the occation of his 60th birthday, Trudy Mat. Inst. Steklova, 262, MAIK Nauka/Interperiodica, Moscow, 2008, 146–155; Proc. Steklov Inst. Math., 262 (2008), 139–148
\Bibitem{Luk08}
\by L.~N.~Luk'yanova
\paper On the Solution of the Trajectory Survival Problem for a~Nonlinear Dynamical System
\inbook Optimal control
\bookinfo Collected papers. Dedicated to professor Viktor Ivanovich Blagodatskikh on the occation of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 262
\pages 146--155
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm770}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489732}
\zmath{https://zbmath.org/?q=an:1152.93031}
\elib{https://elibrary.ru/item.asp?id=11622619}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 262
\pages 139--148
\crossref{https://doi.org/10.1134/S0081543808030115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262228000010}
\elib{https://elibrary.ru/item.asp?id=13586058}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-53849108458}
Linking options:
https://www.mathnet.ru/eng/tm770
https://www.mathnet.ru/eng/tm/v262/p146
This publication is cited in the following 1 articles:
Avetisyan V.V., Chakhmakhchyan R.E., “Control and optimization in a collision avoidance problem in oscillating systems”, J. Comput. Syst. Sci. Int., 55:2 (2016), 163–178