Abstract:
The problem of best approximation of a convex compact set in a finite-dimensional space by ellipsoids with respect to a special measure of deviation of an ellipsoid from a compact set is considered. An analytic description of ellipsoids of best approximation is given.
Citation:
Yu. N. Kiselev, “Approximation of Convex Compact Sets by Ellipsoids. Ellipsoids of Best Approximation”, Optimal control, Collected papers. Dedicated to professor Viktor Ivanovich Blagodatskikh on the occation of his 60th birthday, Trudy Mat. Inst. Steklova, 262, MAIK Nauka/Interperiodica, Moscow, 2008, 103–126; Proc. Steklov Inst. Math., 262 (2008), 96–120
\Bibitem{Kis08}
\by Yu.~N.~Kiselev
\paper Approximation of Convex Compact Sets by Ellipsoids. Ellipsoids of Best Approximation
\inbook Optimal control
\bookinfo Collected papers. Dedicated to professor Viktor Ivanovich Blagodatskikh on the occation of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 262
\pages 103--126
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm768}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489730}
\zmath{https://zbmath.org/?q=an:1161.52007}
\elib{https://elibrary.ru/item.asp?id=11622617}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 262
\pages 96--120
\crossref{https://doi.org/10.1134/S0081543808030097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262228000008}
\elib{https://elibrary.ru/item.asp?id=13572300}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-53849120919}
Linking options:
https://www.mathnet.ru/eng/tm768
https://www.mathnet.ru/eng/tm/v262/p103
This publication is cited in the following 3 articles:
Dean R.Ch., Varshney L.R., “Optimal Recovery of Missing Values For Non-Negative Matrix Factorization”, IEEE Open J. Signal Process., 2 (2021), 207–216
Chen R., Varshney L.R., “Non-Negative Matrix Factorization of Clustered Data With Missing Values”, 2019 IEEE Data Science Workshop (Dsw), IEEE, 2019, 180–184
Pan Li, Baihong Jin, Ruoxuan Xiong, Dai Wang, Alberto Sangiovanni-Vincentelli, Baosen Zhang, 2019 American Control Conference (ACC), 2019, 1301