Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2008, Volume 261, Pages 301–303 (Mi tm758)  

On the Poincaré Inequality for Periodic Composite Structures

V. V. Shumilova

Branch of the Moscow Psychology-Social Institute
References:
Abstract: We consider periodic composite structures characterized by a periodic Borel measure equal to the sum of at least two periodic measures. For such a composite structure, verifying the Poincaré inequality may be a difficult problem. Thus, we are interested in finding conditions under which it suffices to verify the Poincaré inequality separately for each of the simpler structure components instead of verifying it for the composite structure.
Received in February 2007
English version:
Proceedings of the Steklov Institute of Mathematics, 2008, Volume 261, Pages 295–297
DOI: https://doi.org/10.1134/S0081543808020247
Bibliographic databases:
UDC: 517.965
Language: Russian
Citation: V. V. Shumilova, “On the Poincaré Inequality for Periodic Composite Structures”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 261, MAIK Nauka/Interperiodica, Moscow, 2008, 301–303; Proc. Steklov Inst. Math., 261 (2008), 295–297
Citation in format AMSBIB
\Bibitem{Shu08}
\by V.~V.~Shumilova
\paper On the Poincar\'e Inequality for Periodic Composite Structures
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 261
\pages 301--303
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm758}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489715}
\zmath{https://zbmath.org/?q=an:1238.28001}
\elib{https://elibrary.ru/item.asp?id=11032705}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 261
\pages 295--297
\crossref{https://doi.org/10.1134/S0081543808020247}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227900024}
\elib{https://elibrary.ru/item.asp?id=13594895}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849086699}
Linking options:
  • https://www.mathnet.ru/eng/tm758
  • https://www.mathnet.ru/eng/tm/v261/p301
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:273
    Full-text PDF :57
    References:60
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024