Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2008, Volume 261, Pages 188–209 (Mi tm748)  

This article is cited in 5 scientific papers (total in 5 papers)

On Radial Solutions of the Swift–Hohenberg Equation

N. E. Kulagina, L. M. Lermanb, T. G. Shmakovac

a State University of Management
b Research Institute for Applied Mathematics and Cybernetics, N. I. Lobachevski State University of Nizhnii Novgorod
c Moscow State Aviation Technological University
Full-text PDF (454 kB) Citations (5)
References:
Abstract: We study radial solutions to the generalized Swift–Hohenberg equation on the plane with an additional quadratic term. We find stationary localized radial solutions that decay at infinity and solutions that tend to constants as the radius increases unboundedly (“droplets”). We formulate existence theorems for droplets and sketch the proofs employing the properties of the limit system as $r\to\infty$. This system is a Hamiltonian system corresponding to a spatially one-dimensional stationary Swift–Hohenberg equation. We analyze the properties of this system and also discuss concentric-wave-type solutions. All the results are obtained by combining the methods of the theory of dynamical systems, in particular, the theory of homo- and heteroclinic orbits, and numerical simulation.
Received in October 2007
English version:
Proceedings of the Steklov Institute of Mathematics, 2008, Volume 261, Pages 183–203
DOI: https://doi.org/10.1134/S0081543808020144
Bibliographic databases:
UDC: 517.958+517.91/.95+519.6
Language: Russian
Citation: N. E. Kulagin, L. M. Lerman, T. G. Shmakova, “On Radial Solutions of the Swift–Hohenberg Equation”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 261, MAIK Nauka/Interperiodica, Moscow, 2008, 188–209; Proc. Steklov Inst. Math., 261 (2008), 183–203
Citation in format AMSBIB
\Bibitem{KulLerShm08}
\by N.~E.~Kulagin, L.~M.~Lerman, T.~G.~Shmakova
\paper On Radial Solutions of the Swift--Hohenberg Equation
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 261
\pages 188--209
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm748}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489705}
\zmath{https://zbmath.org/?q=an:1235.35170}
\elib{https://elibrary.ru/item.asp?id=11032695}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 261
\pages 183--203
\crossref{https://doi.org/10.1134/S0081543808020144}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227900014}
\elib{https://elibrary.ru/item.asp?id=13585686}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849106775}
Linking options:
  • https://www.mathnet.ru/eng/tm748
  • https://www.mathnet.ru/eng/tm/v261/p188
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:443
    Full-text PDF :108
    References:80
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024