Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2008, Volume 261, Pages 154–175 (Mi tm746)  

This article is cited in 4 scientific papers (total in 5 papers)

Resonance Dynamics of Nonlinear Flutter Systems

A. Yu. Kolesova, E. F. Mishchenkob, N. Kh. Rozovc

a P. G. Demidov Yaroslavl State University
b Steklov Mathematical Institute, Russian Academy of Sciences
c M. V. Lomonosov Moscow State University
Full-text PDF (672 kB) Citations (5)
References:
Abstract: We consider a special class of nonlinear systems of ordinary differential equations, namely, the so-called flutter systems, which arise in Galerkin approximations of certain boundary value problems of nonlinear aeroelasticity and in a number of radiophysical applications. Under the assumption of small damping coefficient, we study the attractors of a flutter system that arise in a small neighborhood of the zero equilibrium state as a result of interaction between the $1:1$ and $1:2$ resonances. We find that, first, these attractors may be both regular and chaotic (in the latter case, we naturally deal with numerical results); and second, for certain parameter values, they coexist with the stable zero solution; i.e., the phenomenon of hard excitation of self-oscillations is observed.
Received in June 2007
English version:
Proceedings of the Steklov Institute of Mathematics, 2008, Volume 261, Pages 149–170
DOI: https://doi.org/10.1134/S0081543808020120
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Resonance Dynamics of Nonlinear Flutter Systems”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 261, MAIK Nauka/Interperiodica, Moscow, 2008, 154–175; Proc. Steklov Inst. Math., 261 (2008), 149–170
Citation in format AMSBIB
\Bibitem{KolMisRoz08}
\by A.~Yu.~Kolesov, E.~F.~Mishchenko, N.~Kh.~Rozov
\paper Resonance Dynamics of Nonlinear Flutter Systems
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 261
\pages 154--175
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm746}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489703}
\zmath{https://zbmath.org/?q=an:1239.34053}
\elib{https://elibrary.ru/item.asp?id=11032693}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 261
\pages 149--170
\crossref{https://doi.org/10.1134/S0081543808020120}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227900012}
\elib{https://elibrary.ru/item.asp?id=13585680}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849101291}
Linking options:
  • https://www.mathnet.ru/eng/tm746
  • https://www.mathnet.ru/eng/tm/v261/p154
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024