Abstract:
This paper is a survey of relatively recent results on the classification of Morse–Smale dynamical systems on closed manifolds. It also contains both old and relatively recent results on the relationship between the topology of the ambient manifold and the dynamical characteristics of Morse–Smale systems.
\Bibitem{ZhuMed08}
\by E.~V.~Zhuzhoma, V.~S.~Medvedev
\paper Global Dynamics of Morse--Smale Systems
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 261
\pages 115--139
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm744}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489701}
\zmath{https://zbmath.org/?q=an:1233.37017}
\elib{https://elibrary.ru/item.asp?id=11032691}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 261
\pages 112--135
\crossref{https://doi.org/10.1134/S0081543808020107}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227900010}
\elib{https://elibrary.ru/item.asp?id=13585675}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849096180}
Linking options:
https://www.mathnet.ru/eng/tm744
https://www.mathnet.ru/eng/tm/v261/p115
This publication is cited in the following 18 articles:
Vladislav S. Medvedev, Evgeny V. Zhuzhoma, “Smale Regular and Chaotic A-Homeomorphisms and A-Diffeomorphisms”, Regul. Chaotic Dyn., 28:2 (2023), 131–147
Leandro Ayarde-Henríquez, Cristian Guerra, Mario Duque-Noreña, Eduardo Chamorro, “A simple topology-based model for predicting the activation barriers of reactive processes at 0 K”, Phys. Chem. Chem. Phys., 25:20 (2023), 14274
E. V. Zhuzhoma, V. S. Medvedev, “Many-Dimensional Morse–Smale Diffeomeophisms with a Dominant Saddle”, Math. Notes, 111:6 (2022), 870–878
Vyacheslav Z. Grines, Vladislav S. Medvedev, Evgeny V. Zhuzhoma, “On the Topological Structure of Manifolds Supporting Axiom A Systems”, Regul. Chaotic Dyn., 27:6 (2022), 613–628
V. Medvedev, E. Zhuzhoma, “High-dimensional Morse-Smale systems with king-saddles”, Topology and its Applications, 312 (2022), 108080
E. V. Zhuzhoma, V. S. Medvedev, “Necessary and sufficient conditions for the conjugacy of Smale regular homeomorphisms”, Sb. Math., 212:1 (2021), 57–69
E. V. Zhuzhoma, V. S. Medvedev, “Underlying Manifolds of High-Dimensional Morse–Smale Diffeomorphisms with Two Saddle Periodic Points”, Math. Notes, 109:3 (2021), 398–404
Medvedev V. Zhuzhoma E., “Supporting Manifolds For High-Dimensional Morse-Smale Diffeomorphisms With Few Saddles”, Topology Appl., 282 (2020), 107315
E. V. Zhuzhoma, V. S. Medvedev, “Conjugacy of Morse–Smale Diffeomorphisms with Three Nonwandering Points”, Math. Notes, 104:5 (2018), 753–757
V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “On the structure of the ambient manifold for Morse–Smale systems without heteroclinic intersections”, Proc. Steklov Inst. Math., 297 (2017), 179–187
E. V. Zhuzhoma, V. S. Medvedev, “Continuous Morse-Smale flows with three equilibrium positions”, Sb. Math., 207:5 (2016), 702–723
V. Z. Grines, E. V. Zhuzhoma, S. V. Medvedev, N. A. Tarasova, “O suschestvovanii periodicheskikh traektorii dlya nepreryvnykh
potokov Morsa-Smeila”, Zhurnal SVMO, 18:1 (2016), 12–16
Grines V. Pochinka O. Zhuzhoma E., “on Families of Diffeomorphisms With Bifurcations of Attractive and Repelling Sets”, Int. J. Bifurcation Chaos, 24:8 (2014), 1440015
Medvedev V.S. Zhuzhoma E.V., “Morse-Smale Systems with Few Non-Wandering Points”, Topology Appl., 160:3 (2013), 498–507
Medvedev V.S. Zhuzhoma E.V., “Locally Flat and Wildly Embedded Separatrices in Simplest Morse-Smale Systems”, J. Dyn. Control Syst., 18:3 (2012), 433–448
Zhuzhoma E.V., Medvedev V.S., “Morse-Smale systems with three nonwandering points”, Dokl. Math., 84:2 (2011), 604–606
Viacheslav Grines, Evgeny Zhuzhoma, Springer Proceedings in Mathematics, 1, Dynamics, Games and Science I, 2011, 421
V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271 (2010), 103–124