Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 252, Pages 224–236 (Mi tm74)  

Multipolytopes and Convex Chains

Y. Nishimura

Setsunan University
References:
Abstract: For a simple complete multipolytope $\mathcal P$ in $\mathbb R^n$, Hattori and Masuda defined a locally constant function $\mathrm {DH}_{\mathcal P}$ on $\mathbb R^n$ minus the union of hyperplanes associated with $\mathcal P$, which agrees with the density function of an equivariant complex line bundle over a Duistermaat–Heckman measure when $\mathcal P$ arises from a moment map of a torus manifold. We improve the definition of $\mathrm {DH}_{\mathcal P}$ and construct a convex chain $\overline {\mathrm {DH}}_{\mathcal P}$ on $\mathbb R^n$. The well-definiteness of this convex chain is equivalent to the semicompleteness of the multipolytope $\mathcal P$. Generalizations of the Pukhlikov–Khovanskii formula and an Ehrhart polynomial for a simple lattice multipolytope are given as corollaries. The constructed correspondence $\{$simple semicomplete multipolytopes$\}\to \{$convex chains$\}$ is surjective but not injective. We will study its “kernel.”
Received in February 2005
English version:
Proceedings of the Steklov Institute of Mathematics, 2006, Volume 252, Pages 212–224
DOI: https://doi.org/10.1134/S0081543806010196
Bibliographic databases:
UDC: 515.145
Language: English
Citation: Y. Nishimura, “Multipolytopes and Convex Chains”, Geometric topology, discrete geometry, and set theory, Collected papers, Trudy Mat. Inst. Steklova, 252, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 224–236; Proc. Steklov Inst. Math., 252 (2006), 212–224
Citation in format AMSBIB
\Bibitem{Nis06}
\by Y.~Nishimura
\paper Multipolytopes and Convex Chains
\inbook Geometric topology, discrete geometry, and set theory
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 252
\pages 224--236
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm74}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2255981}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 252
\pages 212--224
\crossref{https://doi.org/10.1134/S0081543806010196}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746058214}
Linking options:
  • https://www.mathnet.ru/eng/tm74
  • https://www.mathnet.ru/eng/tm/v252/p224
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :102
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024