|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2006, Volume 252, Pages 224–236
(Mi tm74)
|
|
|
|
Multipolytopes and Convex Chains
Y. Nishimura Setsunan University
Abstract:
For a simple complete multipolytope $\mathcal P$ in $\mathbb R^n$, Hattori and Masuda defined a locally constant function $\mathrm {DH}_{\mathcal P}$ on $\mathbb R^n$ minus the union of hyperplanes associated with $\mathcal P$, which agrees with the density function of an equivariant complex line bundle over a Duistermaat–Heckman measure when $\mathcal P$ arises from a moment map of a torus manifold. We improve the definition of $\mathrm {DH}_{\mathcal P}$ and construct a convex chain $\overline {\mathrm {DH}}_{\mathcal P}$ on $\mathbb R^n$. The well-definiteness of this convex chain is equivalent to the semicompleteness of the multipolytope $\mathcal P$. Generalizations of the Pukhlikov–Khovanskii formula and an Ehrhart polynomial for a simple lattice multipolytope are given as corollaries. The constructed correspondence $\{$simple semicomplete multipolytopes$\}\to \{$convex chains$\}$ is surjective but not injective. We will study its “kernel.”
Received in February 2005
Citation:
Y. Nishimura, “Multipolytopes and Convex Chains”, Geometric topology, discrete geometry, and set theory, Collected papers, Trudy Mat. Inst. Steklova, 252, Nauka, MAIK «Nauka/Inteperiodika», M., 2006, 224–236; Proc. Steklov Inst. Math., 252 (2006), 212–224
Linking options:
https://www.mathnet.ru/eng/tm74 https://www.mathnet.ru/eng/tm/v252/p224
|
Statistics & downloads: |
Abstract page: | 236 | Full-text PDF : | 102 | References: | 48 |
|