Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1999, Volume 225, Pages 232–256 (Mi tm723)  

This article is cited in 7 scientific papers (total in 7 papers)

Stochastic Nonlinear Schrödinger Equation. 1. A priori Estimates

S. B. Kuksin

Department of Mathematics, Heriot Watt University
References:
Abstract: We consider a nonlinear Schrödinger equation with a small real coefficient $\delta$ in front of the Laplacian. The equation is forced by a random forcing that is a white noise in time and is smooth in the space-variable $x$ from a unit cube; Dirichlet boundary conditions are assumed on the cube's boundary. We prove that the equation has a unique solution that vanishes at $t=0$. This solution is almost certainly smooth in $x$, and the $k$th moment of its $m$th Sobolev norm in $x$ is bounded by $C_{m,k}\delta^{-km-k/2}$. The proof is based on a lemma that can be treated as a stochastic maximum principle.
Received in December 1998
Bibliographic databases:
UDC: 519.21+517.9
Language: Russian
Citation: S. B. Kuksin, “Stochastic Nonlinear Schrödinger Equation. 1. A priori Estimates”, Solitons, geometry, and topology: on the crossroads, Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov, Trudy Mat. Inst. Steklova, 225, Nauka, MAIK «Nauka/Inteperiodika», M., 1999, 232–256; Proc. Steklov Inst. Math., 225 (1999), 219–242
Citation in format AMSBIB
\Bibitem{Kuk99}
\by S.~B.~Kuksin
\paper Stochastic Nonlinear Schr\"odinger Equation. 1.~A~priori Estimates
\inbook Solitons, geometry, and topology: on the crossroads
\bookinfo Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov
\serial Trudy Mat. Inst. Steklova
\yr 1999
\vol 225
\pages 232--256
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm723}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1725943}
\zmath{https://zbmath.org/?q=an:0984.60070}
\transl
\jour Proc. Steklov Inst. Math.
\yr 1999
\vol 225
\pages 219--242
Linking options:
  • https://www.mathnet.ru/eng/tm723
  • https://www.mathnet.ru/eng/tm/v225/p232
  • This publication is cited in the following 7 articles:
    1. Wei J., Duan J., Gao H., Lv G., “Stochastic Regularization For Transport Equations”, Stoch. Partial Differ. Equ.-Anal. Comput., 9:1 (2021), 105–141  crossref  isi
    2. Huang G., Kuksin S., “On the Energy Transfer to High Frequencies in the Damped/Driven Nonlinear Schrodinger Equation”, Stoch. Partial Differ. Equ.-Anal. Comput., 9:4 (2021), 867–891  crossref  isi
    3. Kuksin S., Zhang H., “Exponential Mixing For Dissipative Pdes With Bounded Non-Degenerate Noise”, Stoch. Process. Their Appl., 130:8 (2020), 4721–4745  crossref  isi
    4. Wei J., Duan J., Lv G., “Schauder Estimates For Stochastic Transport-Diffusion Equations With Levy Processes”, J. Math. Anal. Appl., 474:1 (2019), 1–22  crossref  mathscinet  zmath  isi  scopus
    5. Kuksin S., Shirikyan A., “Randomly forced CGL equation: stationary measures and the inviscid limit”, Journal of Physics A–Mathematical and General, 37:12 (2004), 3805–3822  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. A. R. Shirikyan, “Analyticity of solutions for randomly forced two-dimensional Navier–Stokes equations”, Russian Math. Surveys, 57:4 (2002), 785–799  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. Rougemont J., “Space–time invariant measures, entropy, and dimension for stochastic Ginzburg–Landau equations”, Communications in Mathematical Physics, 225:2 (2002), 423–448  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:562
    Full-text PDF :194
    References:100
    First page:2
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025