Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1999, Volume 225, Pages 160–167 (Mi tm718)  

This article is cited in 5 scientific papers (total in 5 papers)

Optimal Arrangement of Finite Point Sets in Riemannian 2-Manifolds

P. M. Gruber

Vienna University of Technology
References:
Abstract: First a stability version of a theorem of L. Fejes Tóth on sums of moments is given: a large finite point set in a $2$-dimensional Riemannian manifold, for which a certain sum of moments is minimal, must be an approximately regular hexagonal pattern. This result is then applied to show the following: (i) The nodes of optimal numerical integration formulae for Hoelder continuous functions on such manifolds form approximately regular hexagonal patterns if the number of nodes is large. (ii) Given a smooth convex body in $\mathbb E^3$, most facets of the circumscribed convex polytopes of minimum volume in essence are affine regular hexagons if the number of facets is large. A similar result holds with volume replaced by mean width. (iii) A convex polytope in $\mathbb E^3$ of minimal surface area, amongst those of given volume and given number of facets, has the property that most of its facets are almost regular hexagons assuming the number of facets is large.
Received in December 1998
Bibliographic databases:
UDC: 514.17
Language: English
Citation: P. M. Gruber, “Optimal Arrangement of Finite Point Sets in Riemannian 2-Manifolds”, Solitons, geometry, and topology: on the crossroads, Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov, Trudy Mat. Inst. Steklova, 225, Nauka, MAIK «Nauka/Inteperiodika», M., 1999, 160–167; Proc. Steklov Inst. Math., 225 (1999), 148–155
Citation in format AMSBIB
\Bibitem{Gru99}
\by P.~M.~Gruber
\paper Optimal Arrangement of Finite Point Sets in Riemannian 2-Manifolds
\inbook Solitons, geometry, and topology: on the crossroads
\bookinfo Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov
\serial Trudy Mat. Inst. Steklova
\yr 1999
\vol 225
\pages 160--167
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm718}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1725938}
\zmath{https://zbmath.org/?q=an:0982.52021}
\transl
\jour Proc. Steklov Inst. Math.
\yr 1999
\vol 225
\pages 148--155
Linking options:
  • https://www.mathnet.ru/eng/tm718
  • https://www.mathnet.ru/eng/tm/v225/p160
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:286
    Full-text PDF :111
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024