|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1999, Volume 225, Pages 52–86
(Mi tm713)
|
|
|
|
This article is cited in 14 scientific papers (total in 14 papers)
Coincidence Theory: The Minimizing Problem
S. A. Bogatyia, D. L. Gonçalvesb, H. Zieschangc a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Universidade de São Paulo, Instituto de Matemática e Estatística
c Ruhr-Universität Bochum
Abstract:
We provide a short history of the main contributions about the problem of computing the minimal coincidence number $MC[f_1,f_2]$ where $(f_1,f_2)$ is a pair of maps between two topological spaces and where these maps can be homotopically deformed. The more recent contributions are treated in more detail, including some material not yet published.
Received in December 1998
Citation:
S. A. Bogatyi, D. L. Gonçalves, H. Zieschang, “Coincidence Theory: The Minimizing Problem”, Solitons, geometry, and topology: on the crossroads, Collection of papers dedicated to the 60th anniversary of academician Sergei Petrovich Novikov, Trudy Mat. Inst. Steklova, 225, Nauka, MAIK «Nauka/Inteperiodika», M., 1999, 52–86; Proc. Steklov Inst. Math., 225 (1999), 45–77
Linking options:
https://www.mathnet.ru/eng/tm713 https://www.mathnet.ru/eng/tm/v225/p52
|
Statistics & downloads: |
Abstract page: | 603 | Full-text PDF : | 200 | References: | 50 | First page: | 1 |
|