Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1999, Volume 224, Pages 68–111 (Mi tm692)  

This article is cited in 73 scientific papers (total in 73 papers)

Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces

P. de la Harpea, R. I. Grigorchuk, T. Ceccherini-Silbersteinb

a University of Geneva
b Dipartimento di Fisica Teorica, Università degli Studi di Torino
References:
Abstract: This is an exposition of various aspects of amenability and paradoxical decompositions for groups, group actions and metric spaces. First, we review the formalism of pseudogroups, which is well adapted to stating the alternative of Tarski, according to which a pseudogroup without invariant mean gives rise to paradoxical decompositions, and to defining a Følner condition. Using a Hall-Rado Theorem on matchings in graphs, we show then for pseudogroups that existence of an invariant mean is equivalent to the Følner condition; in the case of the pseudogroup of bounded perturbations of the identity on a discrete metric space, these conditions are moreover equivalent to the negation of the Gromov's so-called doubling condition, to isoperimetric conditions, to Kesten's spectral condition for related simple random walks, and to various other conditions. We define also the minimal Tarski number of paradoxical decompositions associated to a non-amenable group action (an integer 4), and we indicate numerical estimates (Sections II.4 and IV.2). The final chapter explores for metric spaces the notion of superamenability, due for groups to Rosenblatt.
Received in September 1998
Bibliographic databases:
Document Type: Article
UDC: 512+517.9
Language: Russian
Citation: P. de la Harpe, R. I. Grigorchuk, T. Ceccherini-Silberstein, “Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces”, Algebra. Topology. Differential equations and their applications, Collection of papers dedicated to the 90th anniversary of academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 224, Nauka, MAIK «Nauka/Inteperiodika», M., 1999, 68–111; Proc. Steklov Inst. Math., 224 (1999), 57–97
Citation in format AMSBIB
\Bibitem{De GriCec99}
\by P.~de la Harpe, R.~I.~Grigorchuk, T.~Ceccherini-Silberstein
\paper Amenability and Paradoxical Decompositions for Pseudogroups and for Discrete Metric Spaces
\inbook Algebra. Topology. Differential equations and their applications
\bookinfo Collection of papers dedicated to the 90th anniversary of academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 1999
\vol 224
\pages 68--111
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm692}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1721355}
\zmath{https://zbmath.org/?q=an:0968.43002}
\transl
\jour Proc. Steklov Inst. Math.
\yr 1999
\vol 224
\pages 57--97
Linking options:
  • https://www.mathnet.ru/eng/tm692
  • https://www.mathnet.ru/eng/tm/v224/p68
  • This publication is cited in the following 73 articles:
    1. V. S. Guba, “R. Thompson's group F and the amenability problem”, Russian Math. Surveys, 77:2 (2022), 251–300  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Azam M., Samei E., “Uniformly Quasi-Hermitian Groups Are Supramenable”, Can. Math. Bul.-Bul. Can. Math., 2021, PII S0008439521000527  crossref  isi
    3. Stankov B., “Non-Triviality of the Poisson Boundary of Random Walks on the Group H (Z) of Monod”, Ergod. Theory Dyn. Syst., 41:4 (2021), 1160–1189  crossref  isi
    4. Grigorchuk R. Samarakoon S., “Integrable and Chaotic Systems Associated With Fractal Groups”, Entropy, 23:2 (2021), 237  crossref  isi
    5. Guba V.S., “On the Ore Condition For the Group Ring of R. Thompson'S Group F”, Commun. Algebr., 49:11 (2021), 4699–4711  crossref  isi
    6. Guba V.S., “On the Density of Cayley Graphs of R.Thompson'S Group F in Symmetric Generators”, Int. J. Algebr. Comput., 31:05 (2021), 969–981  crossref  isi
    7. Tucker-Drob R.D., “Invariant Means and the Structure of Inner Amenable Groups”, Duke Math. J., 169:13 (2020), 2571–2628  crossref  isi
    8. Boenicke Ch., Li K., “Ideal Structure and Pure Infiniteness of Ample Groupoid C-Algebras”, Ergod. Theory Dyn. Syst., 40:1 (2020), 34–63  crossref  isi
    9. Lawson M.V., “Recent Developments in Inverse Semigroup Theory”, Semigr. Forum, 100:1 (2020), 103–118  crossref  isi
    10. Gerasimova M., Gruber D., Monod N., Thom A., “Asymptotics of Cheeger Constants and Unitarisability of Groups”, J. Funct. Anal., 278:11 (2020), UNSP 108457  crossref  isi
    11. Dudko A. Grigorchuk R., “On the Question “Can One Hear the Shape of a Group?” and a Hulanicki Type Theorem For Graphs”, Isr. J. Math., 237:1 (2020), 53–74  crossref  isi
    12. Voiculescu D.-V., “A Remark About Supramenability and the Macaev Norm”, Group. Geom. Dyn., 13:2 (2019), 379–388  crossref  isi
    13. Ara P., Li K., Lledo F., Wu J., “Amenability and Uniform Roe Algebras”, J. Math. Anal. Appl., 459:2 (2018), 686–716  crossref  mathscinet  zmath  isi  scopus  scopus
    14. Li K., Willett R., “Low-Dimensional Properties of Uniform Roe Algebras”, J. Lond. Math. Soc.-Second Ser., 97:1 (2018), 98–124  crossref  mathscinet  zmath  isi  scopus  scopus
    15. Conley C.T., Jackson S.C., Kerr D., Marks A.S., Seward B., Tucker-Drob R.D., “Folner Tilings For Actions of Amenable Groups”, Math. Ann., 371:1-2 (2018), 663–683  crossref  mathscinet  zmath  isi  scopus  scopus
    16. Schneider F.M., Thom A., “On Folner Sets in Topological Groups”, Compos. Math., 154:7 (2018), 1333–1361  crossref  mathscinet  zmath  isi  scopus  scopus
    17. Yousofzadeh A., “A Constructive Way to Compute the Tarski Number of a Group”, J. Algebra. Appl., 17:7 (2018), 1850139  crossref  mathscinet  zmath  isi  scopus  scopus
    18. Martinez-Perez A., Rodriguez J.M., “Cheeger Isoperimetric Constant of Gromov Hyperbolic Manifolds and Graphs”, Commun. Contemp. Math., 20:5 (2018), 1750050  crossref  mathscinet  zmath  isi  scopus
    19. Ara P., Li K., Lledo F., Wu J., “Amenability of Coarse Spaces and K-Algebras”, Bull. Math. Sci., 8:2 (2018), 257–306  crossref  mathscinet  zmath  isi  scopus
    20. Berthe V., Rigo M., “Sequences, Groups, and Number Theory Preface”, Sequences, Groups, and Number Theory, Trends in Mathematics, eds. Berthe V., Rigo M., Birkhauser Verlag Ag, 2018, V+  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:1110
    Full-text PDF :301
    References:103
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025