Abstract:
A new criterion for the weighted Lp–Lq boundedness of the Hardy operator with two variable limits of integration is obtained for 0<q<q+1⩽p<∞. This criterion is applied to the characterization of the weighted Lp–Lq boundedness of the corresponding geometric mean operator for 0<q<p<∞.
Citation:
V. D. Stepanov, E. P. Ushakova, “On the Geometric Mean Operator with Variable Limits of Integration”, Function theory and nonlinear partial differential equations, Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 260, MAIK Nauka/Interperiodica, Moscow, 2008, 264–288; Proc. Steklov Inst. Math., 260 (2008), 254–278
\Bibitem{SteUsh08}
\by V.~D.~Stepanov, E.~P.~Ushakova
\paper On the Geometric Mean Operator with Variable Limits of Integration
\inbook Function theory and nonlinear partial differential equations
\bookinfo Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 260
\pages 264--288
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489517}
\zmath{https://zbmath.org/?q=an:1233.42001}
\elib{https://elibrary.ru/item.asp?id=9934831}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 260
\pages 254--278
\crossref{https://doi.org/10.1134/S0081543808010185}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227800018}
\elib{https://elibrary.ru/item.asp?id=13592737}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749108608}
Linking options:
https://www.mathnet.ru/eng/tm599
https://www.mathnet.ru/eng/tm/v260/p264
This publication is cited in the following 15 articles: