Abstract:
We discuss deformations and the quasiconformal instability of the Kähler geometry of disc bundles that are locally modeled on symmetric rank-one manifolds. The Kähler geometry of these manifolds is associated with natural complex or hypercomplex structures of pinched negative sectional curvature and infinite volume. Their fundamental groups are isomorphic to discrete subgroups of PU(n,1), PSp(n,1), or F−204.
\Bibitem{Apa06}
\by B.~N.~Apanasov
\paper Quasiconformally Instable Disc Bundles with Complex Structures
\inbook Geometric topology, discrete geometry, and set theory
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2006
\vol 252
\pages 18--30
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm58}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2255965}
\zmath{https://zbmath.org/?q=an:1351.53058}
\elib{https://elibrary.ru/item.asp?id=13504582}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 252
\pages 12--22
\crossref{https://doi.org/10.1134/S0081543806010032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746048008}
Linking options:
https://www.mathnet.ru/eng/tm58
https://www.mathnet.ru/eng/tm/v252/p18
This publication is cited in the following 2 articles:
Boris N. Apanasov, “Sierpiński carpet and rigidity of locally symmetric rank one manifolds of infinite volume”, Topology and its Applications, 2025, 109238
B. N. Apanasov, I. Kim, “Cartan angular invariant and deformations of rank 1 symmetric spaces”, Sb. Math., 198:2 (2007), 147–169