Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2007, Volume 259, Pages 243–255 (Mi tm578)  

This article is cited in 6 scientific papers (total in 6 papers)

Stability Islands in Domains of Separatrix Crossings in Slow–Fast Hamiltonian Systems

A. A. Vasil'eva, A. I. Neishtadtab, C. Simóc, D. V. Treschevd

a Space Research Institute, Russian Academy of Sciences
b Department of Mathematical Sciences, Loughborough University
c University of Barcelona, Department of Applied Mathematics and Analysis
d Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (256 kB) Citations (6)
References:
Abstract: We consider a two-degrees-of-freedom Hamiltonian system with one degree of freedom corresponding to fast motion and the other corresponding to slow motion. The ratio of typical velocities of changes of the slow and fast variables is the small parameter $\varepsilon$ of the problem. At frozen values of the slow variables, there is a eparatrix on the phase plane of the fast variables, and there is a region in the phase space (the domain of separatrix crossings) where the projections of phase points onto the plane of the fast variables repeatedly cross the separatrix in the process of evolution of the slow variables. Under a certain symmetry condition, we prove the existence of many (of order $1/\varepsilon$) stable periodic trajectories in the domain of separatrix crossings. Each of these trajectories is surrounded by a stability island whose measure is estimated from below by a value of order $\varepsilon$. So, the total measure of the stability islands is estimated from below by a value independent of $\varepsilon$. The proof is based on an analysis of asymptotic formulas for the corresponding Poincaré map.
Received in November 2006
English version:
Proceedings of the Steklov Institute of Mathematics, 2007, Volume 259, Pages 236–247
DOI: https://doi.org/10.1134/S0081543807040141
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: A. A. Vasil'ev, A. I. Neishtadt, C. Simó, D. V. Treschev, “Stability Islands in Domains of Separatrix Crossings in Slow–Fast Hamiltonian Systems”, Analysis and singularities. Part 2, Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 259, Nauka, MAIK «Nauka/Inteperiodika», M., 2007, 243–255; Proc. Steklov Inst. Math., 259 (2007), 236–247
Citation in format AMSBIB
\Bibitem{VasNeiSim07}
\by A.~A.~Vasil'ev, A.~I.~Neishtadt, C.~Sim\'o, D.~V.~Treschev
\paper Stability Islands in Domains of Separatrix Crossings in Slow--Fast Hamiltonian Systems
\inbook Analysis and singularities. Part~2
\bookinfo Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2007
\vol 259
\pages 243--255
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm578}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2433686}
\zmath{https://zbmath.org/?q=an:1153.37397}
\elib{https://elibrary.ru/item.asp?id=9572737}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 259
\pages 236--247
\crossref{https://doi.org/10.1134/S0081543807040141}
\elib{https://elibrary.ru/item.asp?id=13536560}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38849123664}
Linking options:
  • https://www.mathnet.ru/eng/tm578
  • https://www.mathnet.ru/eng/tm/v259/p243
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:703
    Full-text PDF :221
    References:106
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024