Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2007, Volume 259, Pages 77–85 (Mi tm570)  

This article is cited in 11 scientific papers (total in 11 papers)

Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups

B. A. Khesina, G. Misiołekb

a Department of Mathematics, University of Toronto
b Department of Mathematics, University of Notre Dame
References:
Abstract: We establish a simple relation between certain curvatures of the group of volume-preserving diffeomorphisms and the lifespan of potential solutions to the inviscid Burgers equation before the appearance of shocks. We show that shock formation corresponds to a focal point of the group of volume-preserving diffeomorphisms regarded as a submanifold of the full diffeomorphism group and, consequently, to a conjugate point along a geodesic in the Wasserstein space of densities. This relates the ideal Euler hydrodynamics (via Arnold's approach) to shock formation in the multidimensional Burgers equation and the Kantorovich–Wasserstein geometry of the space of densities.
Received in February 2007
English version:
Proceedings of the Steklov Institute of Mathematics, 2007, Volume 259, Pages 73–81
DOI: https://doi.org/10.1134/S0081543807040062
Bibliographic databases:
Language: English
Citation: B. A. Khesin, G. Misiołek, “Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups”, Analysis and singularities. Part 2, Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 259, Nauka, MAIK «Nauka/Inteperiodika», M., 2007, 77–85; Proc. Steklov Inst. Math., 259 (2007), 73–81
Citation in format AMSBIB
\Bibitem{KheMis07}
\by B.~A.~Khesin, G.~Misio\l ek
\paper Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups
\inbook Analysis and singularities. Part~2
\bookinfo Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2007
\vol 259
\pages 77--85
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm570}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2433678}
\zmath{https://zbmath.org/?q=an:1161.35464}
\elib{https://elibrary.ru/item.asp?id=9572729}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 259
\pages 73--81
\crossref{https://doi.org/10.1134/S0081543807040062}
\elib{https://elibrary.ru/item.asp?id=14425616}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38849205732}
Linking options:
  • https://www.mathnet.ru/eng/tm570
  • https://www.mathnet.ru/eng/tm/v259/p77
  • This publication is cited in the following 11 articles:
    1. Boris Khesin, Gerard Misiołek, Alexander Shnirelman, “Geometric Hydrodynamics in Open Problems”, Arch Rational Mech Anal, 247:2 (2023)  crossref
    2. Pan K., Wu X., Yue X., Ni R., “A Spatial Sixth-Order Ccd-Tvd Method For Solving Multidimensional Coupled Burgers' Equation”, Comput. Appl. Math., 39:2 (2020), 76  crossref  mathscinet  isi
    3. Sergey V. Zakharov, “Asymptotic solutions of a parabolic equation near singular points of A and B types”, Ural Math. J., 5:1 (2019), 101–108  mathnet  crossref  mathscinet  zmath
    4. Chen B., He D., Pan K., “A Linearized High-Order Combined Compact Difference Scheme For Multi-Dimensional Coupled Burgers' Equations”, Numer. Math.-Theory Methods Appl., 11:2 (2018), 299–320  crossref  mathscinet  isi
    5. Khanin K., Sobolevski A., “On Dynamics of Lagrangian Trajectories for Hamilton–Jacobi Equations”, Arch. Ration. Mech. Anal., 219:2 (2016), 861–885  crossref  mathscinet  zmath  isi  elib  scopus
    6. S. V. Zakharov, “Singularities of A and B Types in Asymptotic Analysis of Solutions of a Parabolic Equation”, Funct. Anal. Appl., 49:4 (2015), 307–310  mathnet  crossref  crossref  isi  elib
    7. Khesin B., Lenells J., Misiolek G., Preston S.C., “Curvatures of Sobolev Metrics on Diffeomorphism Groups”, Pure Appl. Math. Q., 9:2, 2, SI (2013), 291–332  crossref  mathscinet  zmath  isi  scopus
    8. Khanin K., Sobolevski A., “Particle dynamics inside shocks in Hamilton–Jacobi equations”, Phil. Trans. R. Soc. A, 368:1916 (2010), 1579–1593  crossref  mathscinet  zmath  adsnasa  isi  scopus
    9. Khesin B., Lee P., “A nonholonomic Moser theorem and optimal transport”, J. Symplectic Geom., 7:4 (2009), 381–414  crossref  mathscinet  zmath  isi  scopus
    10. Delanoe Ph., “Differential Geometric Heuristics for Riemannian Optimal Mass Transportation”, Differential Equations: Geometry, Symmetries and Integrability - the Abel Symposium 2008, Abel Symposia, 5, 2009, 49–73  mathscinet  zmath  isi
    11. Philippe Delanoë, Differential Equations - Geometry, Symmetries and Integrability, 2009, 49  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:448
    Full-text PDF :164
    References:89
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025