Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1999, Volume 227, Pages 7–42 (Mi tm543)  

This article is cited in 9 scientific papers (total in 9 papers)

Characterizations of Bsp,q(G),Lsp,q(G),Wsp(G) and certain other function spaces. Applications

S. S. Ajiev
Full-text PDF (449 kB) Citations (9)
References:
Abstract: The anisotropic Sobolev, Nikol'skii, Besov, and Lizorkin–Triebel spaces are considered on irregular domains (in particular, on open sets) as well as closely related spaces defined by the best local polynomial approximation in different metrics. The questions of the equivalence of norms, dependence of the space structure on the defining parameters, boundedness of pointwise multipliers, description of maximal subalgebras, and also the questions concerning the reflexivity, translation continuity, and comleteness of these spaces are studied.
Received in June 1999
Bibliographic databases:
UDC: 517
Language: Russian
Citation: S. S. Ajiev, “Characterizations of Bsp,q(G),Lsp,q(G),Wsp(G) and certain other function spaces. Applications”, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Collection of papers, Trudy Mat. Inst. Steklova, 227, Nauka, MAIK «Nauka/Inteperiodika», M., 1999, 7–42; Proc. Steklov Inst. Math., 227 (1999), 1–36
Citation in format AMSBIB
\Bibitem{Aji99}
\by S.~S.~Ajiev
\paper Characterizations of $B^s_{p,q}(G),L^s_{p,q}(G),W^s_p(G)$ and certain other function spaces. Applications
\inbook Investigations in the theory of differentiable functions of many variables and its applications. Part~18
\bookinfo Collection of papers
\serial Trudy Mat. Inst. Steklova
\yr 1999
\vol 227
\pages 7--42
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm543}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1784303}
\zmath{https://zbmath.org/?q=an:0979.46017}
\transl
\jour Proc. Steklov Inst. Math.
\yr 1999
\vol 227
\pages 1--36
Linking options:
  • https://www.mathnet.ru/eng/tm543
  • https://www.mathnet.ru/eng/tm/v227/p7
  • This publication is cited in the following 9 articles:
    1. O. V. Besov, “Interpolation of Spaces of Functions of Positive Smoothness on a Domain”, Proc. Steklov Inst. Math., 312 (2021), 91–103  mathnet  crossref  crossref  isi  elib
    2. Besov V O., “Interpolation of Spaces of Functions of Positive Smoothness on a Domain”, Dokl. Math., 102:3 (2020), 451–455  crossref  isi
    3. O. V. Besov, “Interpolation of spaces of functions of positive smoothness on a domain”, Dokl. Math., 102:3 (2020), 524–527  mathnet  crossref  crossref  zmath  isi  elib
    4. S. S. Ajiev, “Hölder analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar'kov's phenomenon. Part II”, Eurasian Math. J., 5:2 (2014), 7–51  mathnet
    5. Gavrilov V.S., “O prostranstvakh soboleva s raznymi stepenyami summiruemosti po raznym peremennym”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 2, 134–138  mathscinet  elib
    6. Gavrilov V.S., “O prostranstvakh soboleva s raznymi stepenyami summiruemosti po raznym peremennym”, Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 2-1, 134–138  elib
    7. Ajiev S., “On concentration, deviation and Dvoretzky's theorem for Besov, Lizorkin-Triebel and other spaces”, Complex Variables and Elliptic Equations, 55:8–10 (2010), 693–726  crossref  mathscinet  zmath  isi  scopus  scopus
    8. A. V. Pokrovskii, “Function classes defined from local approximations by solutions to hypoelliptic equations”, Siberian Math. J., 47:2 (2006), 324–340  mathnet  crossref  mathscinet  zmath  isi  elib
    9. S. S. Ajiev, “Phillips-Type Theorems for Nikol'skii and Certain Other Function Spaces”, Proc. Steklov Inst. Math., 232 (2001), 27–38  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :112
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025