Loading [MathJax]/jax/output/SVG/config.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2000, Volume 231, Pages 119–133 (Mi tm514)  

This article is cited in 7 scientific papers (total in 7 papers)

An Ergodic Theorem for the Action of a Free Semigroup

R. I. Grigorchuk
Full-text PDF (245 kB) Citations (7)
References:
Abstract: An individual ergodic theorem for the action of a free semigroup is proved under the assumption that the measure is stationary. The proof involves the constructions of the associated stationary Markov process and of the skew shift.
Received in May 2000
Bibliographic databases:
Document Type: Article
UDC: 517.987+519.217
Language: Russian
Citation: R. I. Grigorchuk, “An Ergodic Theorem for the Action of a Free Semigroup”, Dynamical systems, automata, and infinite groups, Collected papers, Trudy Mat. Inst. Steklova, 231, Nauka, MAIK «Nauka/Inteperiodika», M., 2000, 119–133; Proc. Steklov Inst. Math., 231 (2000), 113–127
Citation in format AMSBIB
\Bibitem{Gri00}
\by R.~I.~Grigorchuk
\paper An Ergodic Theorem for the Action of a~Free Semigroup
\inbook Dynamical systems, automata, and infinite groups
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2000
\vol 231
\pages 119--133
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm514}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1841754}
\zmath{https://zbmath.org/?q=an:1172.37303}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2000
\vol 231
\pages 113--127
Linking options:
  • https://www.mathnet.ru/eng/tm514
  • https://www.mathnet.ru/eng/tm/v231/p119
  • This publication is cited in the following 7 articles:
    1. A. I. Bufetov, A. V. Klimenko, C. Series, “An ergodic theorem for actions of Fuchsian groups”, Russian Math. Surveys, 78:3 (2023), 566–568  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Grigorchuk R. Samarakoon S., “Integrable and Chaotic Systems Associated With Fractal Groups”, Entropy, 23:2 (2021), 237  crossref  isi
    3. Bowen L., Bufetov A., Romaskevich O., “Mean convergence of Markovian spherical averages for measure-preserving actions of the free group”, Geod. Dedic., 181:1 (2016), 293–306  crossref  mathscinet  zmath  isi  scopus
    4. A. I. Bufetov, A. V. Klimenko, “Maximal inequality and ergodic theorems for Markov groups”, Proc. Steklov Inst. Math., 277 (2012), 27–42  mathnet  crossref  mathscinet  isi  elib  elib
    5. Bufetov A., Klimenko A., “On Markov Operators and Ergodic Theorems for Group Actions”, Eur. J. Comb., 33:7, SI (2012), 1427–1443  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    6. Bufetov A.I., Series C., “A pointwise ergodic theorem for Fuchsian groups”, Math Proc Cambridge Philos Soc, 151:1 (2011), 145–159  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    7. Misiurewicz M., Rodrigues A., “Real 3x+1”, Proceedings of the American Mathematical Society, 133:4 (2005), 1109–1118  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:499
    Full-text PDF :178
    References:74
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025