Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2000, Volume 228, Pages 203–216 (Mi tm501)  

This article is cited in 55 scientific papers (total in 55 papers)

Asymptotic Time Evolution of a Partitioned Infinite Two-sided Isotropic XY-chain

T. G. Hoab, H. Arakib

a Tokyo University of Science
b European Union Science and Technology Research Fellow
References:
Abstract: The system under consideration is that of a two-sided infinite isotropic XY-chain partitioned into two distinct regions. Each side is initially in thermal equilibrium. We investigate the situation when the partition is removed at time t=0. For $t\rightarrow\infty the system approaches thermal equilibrium if the two sides were at the same temperature. If initially the two sides were at different temperatures then the system approaches a steady state.
Received in September 1999
Bibliographic databases:
UDC: 531.19
Language: English
Citation: T. G. Ho, H. Araki, “Asymptotic Time Evolution of a Partitioned Infinite Two-sided Isotropic XY-chain”, Problems of the modern mathematical physics, Collection of papers dedicated to the 90th anniversary of academician Nikolai Nikolaevich Bogolyubov, Trudy Mat. Inst. Steklova, 228, Nauka, MAIK «Nauka/Inteperiodika», M., 2000, 203–216; Proc. Steklov Inst. Math., 228 (2000), 191–204
Citation in format AMSBIB
\Bibitem{HoAra00}
\by T.~G.~Ho, H.~Araki
\paper Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain
\inbook Problems of the modern mathematical physics
\bookinfo Collection of papers dedicated to the 90th anniversary of academician Nikolai Nikolaevich Bogolyubov
\serial Trudy Mat. Inst. Steklova
\yr 2000
\vol 228
\pages 203--216
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm501}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1782582}
\zmath{https://zbmath.org/?q=an:1034.82008}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2000
\vol 228
\pages 191--204
Linking options:
  • https://www.mathnet.ru/eng/tm501
  • https://www.mathnet.ru/eng/tm/v228/p203
  • This publication is cited in the following 55 articles:
    1. Yamaga K., “Work Relation in Non-Equilibrium Steady States of One-Dimensional Quantum Lattice Systems”, J. Math. Phys., 62:1 (2021), 013302  crossref  isi
    2. Aschbacher W.H., “Heat Flux in General Quasifree Fermionic Right Mover/Left Mover Systems”, Rev. Math. Phys., 33:06 (2021), 2150018  crossref  isi
    3. Myers J., Bhaseen M.J., Harris R.J., Doyon B., “Transport Fluctuations in Integrable Models Out of Equilibrium”, SciPost Phys., 8:1 (2020), 007  crossref  mathscinet  isi
    4. Cornean H.D., Moldoveanu V., Pillet C.-A., “A Mathematical Account of the Negf Formalism”, Ann. Henri Poincare, 19:2 (2018), 411–442  crossref  mathscinet  zmath  isi  scopus
    5. Bastianello A., Doyon B., Watts G., Yoshimura T., “Generalized Hydrodynamics of Classical Integrable Field Theory: the Sinh-Gordon Model”, SciPost Phys., 4:6 (2018), 045  crossref  isi
    6. Gawedzki K., Langmann E., Moosavi P., “Finite-Time Universality in Nonequilibrium CFT”, J. Stat. Phys., 172:2, SI (2018), 353–378  crossref  mathscinet  isi  scopus
    7. Gransee M., Pinamonti N., Verch R., “Kms-Like Properties of Local Equilibrium States in Quantum Field Theory”, J. Geom. Phys., 117 (2017), 15–35  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Kormos M., Zimboras Z., “Temperature Driven Quenches in the Ising Model: Appearance of Negative Renyi Mutual Information”, J. Phys. A-Math. Theor., 50:26 (2017), 264005  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Langmann E., Lebowitz J.L., Mastropietro V., Moosavi P., “Time Evolution of the Luttinger Model With Nonuniform Temperature Profile”, Phys. Rev. B, 95:23 (2017), 235142  crossref  isi  scopus  scopus
    10. Doyon B., Spohn H., “Dynamics of Hard Rods With Initial Domain Wall State”, J. Stat. Mech.-Theory Exp., 2017, 073210  crossref  mathscinet  isi  scopus  scopus
    11. Spillane M., Herzog Ch.P., “Relativistic hydrodynamics and non-equilibrium steady states”, J. Stat. Mech.-Theory Exp., 2016, 103208  crossref  mathscinet  isi  scopus  scopus
    12. Aschbacher W.H., “On a quantum phase transition in a steady state out of equilibrium”, J. Phys. A-Math. Theor., 49:41 (2016), 415201  crossref  mathscinet  zmath  isi  scopus  scopus
    13. Bernard D., Doyon B., “Conformal field theory out of equilibrium: a review”, J. Stat. Mech.-Theory Exp., 2016, 064005  crossref  mathscinet  isi  scopus  scopus
    14. Bernard D., Doyon B., “A hydrodynamic approach to non-equilibrium conformal field theories”, J. Stat. Mech.-Theory Exp., 2016, 033104  crossref  mathscinet  isi  scopus  scopus
    15. Doyon B., Lucas A., Schalm K., Bhaseen M.J., “Non-Equilibrium Steady States in the Klein-Gordon Theory”, J. Phys. A-Math. Theor., 48:9 (2015), 095002  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    16. Doyon B., “Lower Bounds For Ballistic Current and Noise in Non-Equilibrium Quantum Steady States”, Nucl. Phys. B, 892 (2015), 190–210  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    17. Genovese G., “on the Dynamics of Xy Spin Chains With Impurities”, Physica A, 434 (2015), 36–51  crossref  adsnasa  isi  scopus  scopus
    18. Hoogeveen M., Doyon B., “Entanglement Negativity and Entropy in Non-Equilibrium Conformal Field Theory”, Nucl. Phys. B, 898 (2015), 78–112  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    19. Eisler V., Zimboras Z., “Entanglement Negativity in the Harmonic Chain Out of Equilibrium”, New J. Phys., 16 (2014), 123020  crossref  isi  scopus  scopus
    20. Cornean H.D., Moldoveanu V., Pillet C.-A., “on the Steady State Correlation Functions of Open Interacting Systems”, Commun. Math. Phys., 331:1 (2014), 261–295  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :210
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025