Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 251, Pages 173–199 (Mi tm49)  

This article is cited in 3 scientific papers (total in 3 papers)

Some Problems in Nonlinear Dynamic Elasticity

A. G. Kulikovskiia, E. I. Sveshnikovab, A. P. Chugainovaa

a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (324 kB) Citations (3)
References:
Abstract: The paper contains a survey of recent studies of small-amplitude quasi-transverse one-dimensional waves in elastic and viscoelastic media. The following issues are addressed: We study small-amplitude nonlinear waves in elastic media under a more accurate consideration of the internal energy compared with the earlier works. We describe new properties of shock waves and Riemann waves of small amplitude in an anisotropic medium whose properties are invariant under the rotation through $120^\circ $ about the wave normal. We formulate similarity conditions for one-dimensional problems of nonlinear elasticity. We discuss reasons for the earlier discovered nonuniqueness of solutions to self-similar problems for waves in elastic media, and formulate a criterion that allows one to predict, based solely on the properties of the shock adiabat, the nonuniqueness or the nonexistence of self-similar solutions to systems of hyperbolic equations that express conservation laws. We consider the structure of shock waves in elastic media in the framework of the Kelvin–Voigt model of a viscous medium. The results of the numerical analysis of the nonlinear stability of the structure of metastable shock waves are also presented.
Received in September 2004
Bibliographic databases:
Document Type: Article
UDC: 539.3+534.1
Language: Russian
Citation: A. G. Kulikovskii, E. I. Sveshnikova, A. P. Chugainova, “Some Problems in Nonlinear Dynamic Elasticity”, Nonlinear dynamics, Collected papers, Trudy Mat. Inst. Steklova, 251, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 173–199; Proc. Steklov Inst. Math., 251 (2005), 165–191
Citation in format AMSBIB
\Bibitem{KulSveChu05}
\by A.~G.~Kulikovskii, E.~I.~Sveshnikova, A.~P.~Chugainova
\paper Some Problems in Nonlinear Dynamic Elasticity
\inbook Nonlinear dynamics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 251
\pages 173--199
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm49}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2234381}
\zmath{https://zbmath.org/?q=an:1138.74349}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 251
\pages 165--191
Linking options:
  • https://www.mathnet.ru/eng/tm49
  • https://www.mathnet.ru/eng/tm/v251/p173
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:584
    Full-text PDF :195
    References:98
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024