Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2007, Volume 258, Pages 185–200 (Mi tm483)  

This article is cited in 4 scientific papers (total in 4 papers)

Hyperbolic Carathéodory Conjecture

S. L. Tabachnikova, V. Yu. Ovsienkob

a Department of Mathematics, Pennsylvania State University
b Institut Camille Jordan, Université Claude Bernard Lyon 1
Full-text PDF (253 kB) Citations (4)
References:
Abstract: A quadratic point on a surface in $\mathbb R\mathrm P^3$ is a point at which the surface can be approximated by a quadric abnormally well (up to order 3). We conjecture that the least number of quadratic points on a generic compact nondegenerate hyperbolic surface is 8; the relation between this and the classic Carathéodory conjecture is similar to the relation between the six-vertex and the four-vertex theorems on plane curves. Examples of quartic perturbations of the standard hyperboloid confirm our conjecture. Our main result is a linearization and reformulation of the problem in the framework of the 2-dimensional Sturm theory; we also define a signature of a quadratic point and calculate local normal forms recovering and generalizing the Tresse–Wilczynski theorem.
Received in November 2006
English version:
Proceedings of the Steklov Institute of Mathematics, 2007, Volume 258, Pages 178–193
DOI: https://doi.org/10.1134/S0081543807030133
Bibliographic databases:
UDC: 514.7
Language: English
Citation: S. L. Tabachnikov, V. Yu. Ovsienko, “Hyperbolic Carathéodory Conjecture”, Analysis and singularities. Part 1, Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 258, Nauka, MAIK «Nauka/Inteperiodika», M., 2007, 185–200; Proc. Steklov Inst. Math., 258 (2007), 178–193
Citation in format AMSBIB
\Bibitem{TabOvs07}
\by S.~L.~Tabachnikov, V.~Yu.~Ovsienko
\paper Hyperbolic Carath\'eodory Conjecture
\inbook Analysis and singularities. Part~1
\bookinfo Collected papers. Dedicated to academician Vladimir Igorevich Arnold on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2007
\vol 258
\pages 185--200
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm483}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2400530}
\zmath{https://zbmath.org/?q=an:1163.53004}
\elib{https://elibrary.ru/item.asp?id=9549689}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 258
\pages 178--193
\crossref{https://doi.org/10.1134/S0081543807030133}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35148894665}
Linking options:
  • https://www.mathnet.ru/eng/tm483
  • https://www.mathnet.ru/eng/tm/v258/p185
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :97
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024