Abstract:
A detailed proof of the absence of mixing is presented for a special flow constructed by an arbitrary rotation of the circle and by a symmetric function with logarithmic singularities (i.e., a function for which the sums of the coefficients of logarithms for “right” and “left” singularities are equal).
Citation:
A. V. Kochergin, “Nondegenerate Saddle Points and the Absence of Mixing in Flows on Surfaces”, Dynamical systems and optimization, Collected papers. Dedicated to the 70th birthday of academician Dmitrii Viktorovich Anosov, Trudy Mat. Inst. Steklova, 256, Nauka, MAIK «Nauka/Inteperiodika», M., 2007, 252–266; Proc. Steklov Inst. Math., 256 (2007), 238–252
\Bibitem{Koc07}
\by A.~V.~Kochergin
\paper Nondegenerate Saddle Points and the Absence of Mixing in Flows on Surfaces
\inbook Dynamical systems and optimization
\bookinfo Collected papers. Dedicated to the 70th birthday of academician Dmitrii Viktorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2007
\vol 256
\pages 252--266
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm465}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336903}
\zmath{https://zbmath.org/?q=an:1153.37303}
\elib{https://elibrary.ru/item.asp?id=9482618}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 256
\pages 238--252
\crossref{https://doi.org/10.1134/S0081543807010130}
\elib{https://elibrary.ru/item.asp?id=13560203}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248333083}
Linking options:
https://www.mathnet.ru/eng/tm465
https://www.mathnet.ru/eng/tm/v256/p252
This publication is cited in the following 12 articles:
Mariusz Lemańczyk, “Ergodicity, mixing, Ratner's properties and disjointness for classical flows: On the research of Corinna Ulcigrai”, JMD, 18 (2022), 103
Ulcigrai C., “Slow Chaos in Surface Flows”, Boll. Unione Mat. Ital., 14:1 (2021), 231–255
Chaika J., Fraczek K., Kanigowski A., Ulcigrai C., “Singularity of the Spectrum For Smooth Area-Preserving Flows in Genus Two and Translation Surfaces Well Approximated By Cylinders”, Commun. Math. Phys., 381:3 (2021), 1369–1407
Bassam Fayad, Giovanni Forni, Adam Kanigowski, “Lebesgue spectrum of countable multiplicity for conservative flows on the torus”, J. Amer. Math. Soc., 34:3 (2021), 747
Artur Avila, Giovanni Forni, Davide Ravotti, Corinna Ulcigrai, “Mixing for smooth time-changes of general nilflows”, Advances in Mathematics, 385 (2021), 107759
F. Cellarosi, The Abel Prize, The Abel Prize 2013-2017, 2019, 207
A. I. Bufetov, B. M. Gurevich, K. M. Khanin, F. Cellarosi, “The Abel Prize award to Ya. G. Sinai”, Russian Math. Surveys, 69:5 (2014), 931–956
Ulcigrai C., “Absence of mixing in area-preserving flows on surfaces”, Ann. of Math. (2), 173:3 (2011), 1743–1778
Avila A., Forni G., Ulcigrai C., “Mixing for Time-Changes of Heisenberg Nilflows”, J. Differential Geom., 89:3 (2011), 369–410
Knill O., Tangerman F., “Self-similarity and growth in Birkhoff sums for the golden rotation”, Nonlinearity, 24:11 (2011), 3115–3127
Ulcigrai C., “Weak mixing for logarithmic flows over interval exchange transformations”, J. Mod. Dyn., 3:1 (2009), 35–49
Scheglov D., “Absence of mixing for smooth flows on genus two surfaces”, J. Mod. Dyn., 3:1 (2009), 13–34