Abstract:
Properties of the solutions to differential equations on the torus with a complete set of multivalued first integrals are considered, including the existence of an invariant measure, the averaging principle, and the infiniteness of the number of zeros for integrals of zero-mean functions along trajectories. The behavior of systems with closed trajectories of large period is studied. It is shown that a generic system acquires a limit mixing property as the periods tend to infinity.
Citation:
V. V. Kozlov, “Dynamical Systems with Multivalued Integrals on a Torus”, Dynamical systems and optimization, Collected papers. Dedicated to the 70th birthday of academician Dmitrii Viktorovich Anosov, Trudy Mat. Inst. Steklova, 256, Nauka, MAIK «Nauka/Inteperiodika», M., 2007, 201–218; Proc. Steklov Inst. Math., 256 (2007), 188–205
\Bibitem{Koz07}
\by V.~V.~Kozlov
\paper Dynamical Systems with Multivalued Integrals on a Torus
\inbook Dynamical systems and optimization
\bookinfo Collected papers. Dedicated to the 70th birthday of academician Dmitrii Viktorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2007
\vol 256
\pages 201--218
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm462}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336900}
\zmath{https://zbmath.org/?q=an:1153.37327}
\elib{https://elibrary.ru/item.asp?id=9482615}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 256
\pages 188--205
\crossref{https://doi.org/10.1134/S0081543807010105}
\elib{https://elibrary.ru/item.asp?id=13550596}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248590645}
Linking options:
https://www.mathnet.ru/eng/tm462
https://www.mathnet.ru/eng/tm/v256/p201
This publication is cited in the following 21 articles:
N. V. Denisova, “Recurrence of integrals of conditionally periodic functions”, Dokl. Math., 108:1 (2023), 316–319
Yuchen He, Hongkai Zhao, Yimin Zhong, “How Much Can One Learn a Partial Differential Equation from Its Solution?”, Found Comput Math, 2023
V. V. Kozlov, “On the integrability of the equations of dynamics in a non-potential force field”, Russian Math. Surveys, 77:6 (2022), 1087–1106
N. V. Denisova, “On the dynamics of systems with two degrees of freedom”, Dokl. Math., 105:1 (2022), 1–5
Kozlov V.V., “On the Problem of Separation of Variables in Systems of Ordinary Differential Equations”, Differ. Equ., 57:10 (2021), 1299–1306
V. V. Kozlov, “Tensor invariants and integration of differential equations”, Russian Math. Surveys, 74:1 (2019), 111–140
De Leo R., “A Survey on Quasiperiodic Topology”, Advanced Mathematical Methods in Biosciences and Applications, Steam-H Science Technology Engineering Agriculture Mathematics & Health, ed. Berezovskaya F. Toni B., Springer International Publishing Ag, 2019, 53–88
Karakhanyan A.L., Shahgholian H., “On a Conjecture of de Giorgi Related to Homogenization”, Ann. Mat. Pura Appl., 196:6 (2017), 2167–2183
Kozlov V.V., “On the equations of the hydrodynamic type”, Pmm-J. Appl. Math. Mech., 80:3 (2016), 209–214
V. I. Dragović, M. Radnović, “Pseudo-integrable billiards and double reflection nets”, Russian Math. Surveys, 70:1 (2015), 1–31
I. A. Bizyaev, V. V. Kozlov, “Homogeneous systems with quadratic integrals, Lie-Poisson quasibrackets, and Kovalevskaya's method”, Sb. Math., 206:12 (2015), 1682–1706
A. Yu. Anikin, J. Brüning, S. Yu. Dobrokhotov, “Averaging and trajectories of a Hamiltonian system appearing in graphene placed in a strong magnetic field and a periodic potential”, J. Math. Sci., 223:6 (2017), 656–666
V. V. Kozlov, “Dinamika sistem s servosvyazyami. II”, Nelineinaya dinam., 11:3 (2015), 579–611
Valery V. Kozlov, “The Dynamics of Systems with Servoconstraints. II”, Regul. Chaotic Dyn., 20:4 (2015), 401–427
V. V. Kozlov, “Liouville's equation as a Schrödinger equation”, Izv. Math., 78:4 (2014), 744–757
Bizyaev I.A., “Nonintegrability and Obstructions To the Hamiltonianization of a Nonholonomic Chaplygin TOP”, Dokl. Math., 90:2 (2014), 631–634
Dragovic V., Radnovic M., “Pseudo-Integrable Billiards and Arithmetic Dynamics”, J. Mod. Dyn., 8:1 (2014), 109–132
V. V. Kozlov, “On Bohl's Argument Theorem”, Math. Notes, 93:1 (2013), 83–89
A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Problema dreifa i vozvraschaemosti pri kachenii shara Chaplygina”, Nelineinaya dinam., 9:4 (2013), 721–754
Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “The Problem of Drift and Recurrence for the Rolling Chaplygin Ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859