Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2007, Volume 256, Pages 115–147 (Mi tm459)  

This article is cited in 27 scientific papers (total in 27 papers)

Minimal Sets of Cartan Foliations

N. I. Zhukova

N. I. Lobachevski State University of Nizhni Novgorod
References:
Abstract: A foliation that admits a Cartan geometry as its transversal structure is called a Cartan foliation. We prove that on a manifold $M$ with a complete Cartan foliation $\mathscr F$, there exists one more foliation $(M,\mathscr O)$, which is generally singular and is called an aureole foliation; moreover, the foliations $\mathscr F$ and $\mathscr O$ have common minimal sets. By using an aureole foliation, we prove that for complete Cartan foliations of the type $\mathfrak g/\mathfrak h$ with a compactly embedded Lie subalgebra $\mathfrak h$ in $\mathfrak g$, the closure of each leaf forms a minimal set such that the restriction of the foliation onto this set is a transversally locally homogeneous Riemannian foliation. We describe the structure of complete transversally similar foliations $(M,\mathscr F)$. We prove that for such foliations, there exists a unique minimal set $\mathscr M$, and $\mathscr M$ is contained in the closure of any leaf. If the foliation $(M,\mathscr F)$ is proper, then $\mathscr M$ is a unique closed leaf of this foliation.
Received in June 2006
English version:
Proceedings of the Steklov Institute of Mathematics, 2007, Volume 256, Pages 105–135
DOI: https://doi.org/10.1134/S0081543807010075
Bibliographic databases:
UDC: 514.76+515.165
Language: Russian
Citation: N. I. Zhukova, “Minimal Sets of Cartan Foliations”, Dynamical systems and optimization, Collected papers. Dedicated to the 70th birthday of academician Dmitrii Viktorovich Anosov, Trudy Mat. Inst. Steklova, 256, Nauka, MAIK «Nauka/Inteperiodika», M., 2007, 115–147; Proc. Steklov Inst. Math., 256 (2007), 105–135
Citation in format AMSBIB
\Bibitem{Zhu07}
\by N.~I.~Zhukova
\paper Minimal Sets of Cartan Foliations
\inbook Dynamical systems and optimization
\bookinfo Collected papers. Dedicated to the 70th birthday of academician Dmitrii Viktorovich Anosov
\serial Trudy Mat. Inst. Steklova
\yr 2007
\vol 256
\pages 115--147
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm459}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2336897}
\zmath{https://zbmath.org/?q=an:1246.37046}
\elib{https://elibrary.ru/item.asp?id=9482612}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2007
\vol 256
\pages 105--135
\crossref{https://doi.org/10.1134/S0081543807010075}
\elib{https://elibrary.ru/item.asp?id=13552681}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248329996}
Linking options:
  • https://www.mathnet.ru/eng/tm459
  • https://www.mathnet.ru/eng/tm/v256/p115
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:755
    Full-text PDF :226
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024