Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2004, Volume 244, Pages 249–280 (Mi tm448)  

This article is cited in 13 scientific papers (total in 13 papers)

Dirac Operators and Conformal Invariants of Tori in 3-Space

I. A. Taimanov

Institute of Mathematics, Siberian Branch of USSR Academy of Sciences
References:
Abstract: It is proved that the multipliers of the Floquet functions that are associated with immersions of tori into R3 (or S3) form a complex curve in C2. The properties of this curve are studied. In addition, it is shown how the curve and its construction are related to the method of finite-gap integration, the Willmore functional, and harmonic mappings of the 2-torus into S3.
Received in April 2001
Bibliographic databases:
UDC: 514.752.43+517.984
Language: Russian
Citation: I. A. Taimanov, “Dirac Operators and Conformal Invariants of Tori in 3-Space”, Dynamical systems and related problems of geometry, Collected papers. Dedicated to the memory of academician Andrei Andreevich Bolibrukh, Trudy Mat. Inst. Steklova, 244, Nauka, MAIK «Nauka/Inteperiodika», M., 2004, 249–280; Proc. Steklov Inst. Math., 244 (2004), 233–263
Citation in format AMSBIB
\Bibitem{Tai04}
\by I.~A.~Taimanov
\paper Dirac Operators and Conformal Invariants of Tori in 3-Space
\inbook Dynamical systems and related problems of geometry
\bookinfo Collected papers. Dedicated to the memory of academician Andrei Andreevich Bolibrukh
\serial Trudy Mat. Inst. Steklova
\yr 2004
\vol 244
\pages 249--280
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm448}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2075118}
\zmath{https://zbmath.org/?q=an:1091.53041}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2004
\vol 244
\pages 233--263
Linking options:
  • https://www.mathnet.ru/eng/tm448
  • https://www.mathnet.ru/eng/tm/v244/p249
  • This publication is cited in the following 13 articles:
    1. V. A. Kyrov, “Poverkhnosti na psevdogelmgoltsevoi gruppe”, Matem. zametki, 117:2 (2025), 285–294  mathnet  crossref
    2. V. A. Kyrov, “Uravneniya Vaingartena dlya poverkhnostei na gruppakh gelmgoltseva tipa”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXV», Voronezh, 26-30 aprelya 2024 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 235, VINITI RAN, M., 2024, 68–77  mathnet  crossref
    3. Bayard P., Lawn M.-A., Roth J., “Spinorial Representation of Submanifolds in Riemannian Space Forms”, Pac. J. Math., 291:1 (2017), 51–80  crossref  mathscinet  zmath  isi  scopus
    4. Bohle Ch., Taimanov I.A., “Euclidean Minimal Tori With Planar Ends and Elliptic Solitons”, Int. Math. Res. Notices, 2015, no. 14, 5907–5932  crossref  mathscinet  zmath  isi  elib  scopus
    5. Alias L.J., de Lira J.H.S., Hinojosa J.A., “Generalized Weierstrass representation for surfaces in Heisenberg spaces”, Differential Geom Appl, 30:1 (2012), 1–12  crossref  mathscinet  zmath  isi  elib  scopus
    6. de Lira J.H.S., Hinojosa J.A., “The Gauss map of minimal surfaces in the Anti-de Sitter space”, J Geom Phys, 61:3 (2011), 610–623  crossref  mathscinet  zmath  adsnasa  isi  scopus
    7. McIntosh I., “The Quaternionic KP Hierarchy and Conformally Immersed 2-Tori in the 4-Sphere”, Tohoku Math J (2), 63:2 (2011), 183–215  crossref  mathscinet  zmath  isi  scopus
    8. de Lira J.H.S., Hinojosa J.A., “The Gauss map of minimal surfaces in Berger spheres”, Ann. Global Anal. Geom., 37:2 (2010), 143–162  crossref  mathscinet  zmath  isi  scopus
    9. D. A. Berdinsky, “On constant mean curvature surfaces in the Heisenberg group”, Siberian Adv. Math., 22:2 (2012), 75–79  mathnet  crossref  mathscinet
    10. I. A. Taimanov, “Two-dimensional Dirac operator and the theory of surfaces”, Russian Math. Surveys, 61:1 (2006), 79–159  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Taimanov I.A., “Surfaces in the four-space and the Davey–Stewartson equations”, J. Geom. Phys., 56:8 (2006), 1235–1256  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    12. D. A. Berdinskii, I. A. Taimanov, “Surfaces in three-dimensional Lie groups”, Siberian Math. J., 46:6 (2005), 1005–1019  mathnet  crossref  mathscinet  zmath  isi
    13. Taimanov I.A., “Finite-gap theory of the Clifford torus”, Int. Math. Res. Not., 2005, no. 2, 103–120  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:643
    Full-text PDF :215
    References:112
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025