Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, Forthcoming paper (Mi tm4435)  

Finite-gap potentials and integrable geodesic equations on a 2-surface

S. V. Agapovab, A. E. Mironovab

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Abstract: In this paper we show that the one-dimensional Schrödinger equation can be viewed as the geodesic equation of a certain metric on a 2-surface. In case of the Schrödinger equation with a finite-gap potential, the metric and geodesics are explicitly found in terms of the Baker–Akhiezer function.
Keywords: Schrödinger equation, finite-gap potential, Baker—Akhiezer function, metrisability, geodesics, integrability
Funding agency Grant number
Russian Science Foundation 24-11-00281
Both authors are supported by the grant of the Russian Science Foundation No. 24-11-00281, https://rscf.ru/project/24-11-00281/.
Received: June 6, 2024
Revised: July 1, 2024
Accepted: August 13, 2024
Document Type: Article
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/tm4435
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025