Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 325, Pages 201–231
DOI: https://doi.org/10.4213/tm4416
(Mi tm4416)
 

Minimal Model of a Nilmanifold and Moduli Space of Complex Structures

D. V. Millionshchikov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: For an arbitrary real nilpotent Lie algebra (nilmanifold) with an integrable complex structure, we propose an algorithm for constructing a special model of this nilmanifold that includes information on the complex structure. As a main application, we obtain a classification of eight-dimensional $2$-generated nilpotent Lie algebras that admit an integrable complex structure. We also describe the moduli spaces of complex structures for each Lie algebra from the resulting classification list.
Keywords: nilmanifold, nilpotent Lie algebra, complex structure, lower central series, minimal model, Dolbeault cohomology.
Funding agency Grant number
Russian Science Foundation 23-11-00143
This work was supported by the Russian Science Foundation under grant no. 23-11-00143, https://rscf.ru/en/project/23-11-00143/.
Received: April 2, 2024
Revised: May 13, 2024
Accepted: June 3, 2024
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 325, Pages 188–217
DOI: https://doi.org/10.1134/S0081543824020111
Bibliographic databases:
Document Type: Article
UDC: 514.763.42
Language: Russian
Citation: D. V. Millionshchikov, “Minimal Model of a Nilmanifold and Moduli Space of Complex Structures”, Geometry, Topology, and Mathematical Physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 85th birthday, Trudy Mat. Inst. Steklova, 325, Steklov Mathematical Institute of RAS, Moscow, 2024, 201–231; Proc. Steklov Inst. Math., 325 (2024), 188–217
Citation in format AMSBIB
\Bibitem{Mil24}
\by D.~V.~Millionshchikov
\paper Minimal Model of a Nilmanifold and Moduli Space of Complex Structures
\inbook Geometry, Topology, and Mathematical Physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 85th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 325
\pages 201--231
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4416}
\crossref{https://doi.org/10.4213/tm4416}
\zmath{https://zbmath.org/?q=an:07939069}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 325
\pages 188--217
\crossref{https://doi.org/10.1134/S0081543824020111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001340397900016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85207504571}
Linking options:
  • https://www.mathnet.ru/eng/tm4416
  • https://doi.org/10.4213/tm4416
  • https://www.mathnet.ru/eng/tm/v325/p201
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024