Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 325, Pages 5–25
DOI: https://doi.org/10.4213/tm4415
(Mi tm4415)
 

This article is cited in 1 scientific paper (total in 1 paper)

Topology of Misorientation Spaces

Anton A. Ayzenberga, Dmitry V. Gugninb

a Laboratory of Algebraic Topology and Its Applications, Faculty of Computer Science, HSE University, Moscow, Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Let $G_1$ and $G_2$ be finite subgroups of $\mathrm {SO}(3)$. The double quotients of the form $X(G_1,G_2)=G_1\backslash\mathrm{SO}(3)/G_2$ were introduced in materials science under the name misorientation spaces. In this paper we review several known results that allow one to study the topology of misorientation spaces. Neglecting the orbifold structure, one can say that all misorientation spaces are closed orientable topological $3$-manifolds with finite fundamental groups. In the case when $G_1$ and $G_2$ are crystallographic groups, we compute the fundamental groups $\pi _1(X(G_1,G_2))$ and apply the elliptization theorem to describe these spaces. Many misorientation spaces are homeomorphic to $S^3$ by Perelman's theorem. However, we explicitly describe the topological types of several misorientation spaces without appealing to Perelman's theorem. The classification of misorientation spaces yields new $n$-valued group structures on the manifolds $S^3$ and $\mathbb R\mathrm P^3$. Finally, we outline the connection of the particular misorientation space $X(D_2,D_2)$ with integrable dynamical systems and toric topology.
Keywords: misorientation space, mathematical crystallography, point crystallographic group, finite group action, orbit space, elliptic manifold.
Funding agency Grant number
HSE Basic Research Program
The work of A. A. Ayzenberg was performed within the framework of the HSE University project “Mirror Laboratories.”
Received: February 4, 2024
Revised: May 12, 2024
Accepted: May 13, 2024
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 325, Pages 1–20
DOI: https://doi.org/10.1134/S0081543824020019
Bibliographic databases:
Document Type: Article
UDC: 515.146.27
Language: Russian
Citation: Anton A. Ayzenberg, Dmitry V. Gugnin, “Topology of Misorientation Spaces”, Geometry, Topology, and Mathematical Physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 85th birthday, Trudy Mat. Inst. Steklova, 325, Steklov Mathematical Institute of RAS, Moscow, 2024, 5–25; Proc. Steklov Inst. Math., 325 (2024), 1–20
Citation in format AMSBIB
\Bibitem{AyzGug24}
\by Anton~A.~Ayzenberg, Dmitry~V.~Gugnin
\paper Topology of Misorientation Spaces
\inbook Geometry, Topology, and Mathematical Physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 85th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 325
\pages 5--25
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4415}
\crossref{https://doi.org/10.4213/tm4415}
\zmath{https://zbmath.org/?q=an:07939059}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 325
\pages 1--20
\crossref{https://doi.org/10.1134/S0081543824020019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85207483041}
Linking options:
  • https://www.mathnet.ru/eng/tm4415
  • https://doi.org/10.4213/tm4415
  • https://www.mathnet.ru/eng/tm/v325/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025