Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 325, Pages 119–128
DOI: https://doi.org/10.4213/tm4393
(Mi tm4393)
 

Tamanoi Equation for Orbifold Euler Characteristics Revisited

S. M. Gusein-Zadeabc

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
c National Research University Higher School of Economics, Moscow, Russia
References:
Abstract: Tamanoi equation is a Macdonald-type equation for the orbifold Euler characteristic and for its higher order analogs. It states that the generating series of fixed-order orbifold Euler characteristics of analogs of the symmetric powers for a space with a finite group action can be represented as a certain unified (explicitly written) power series raised to the power equal to the orbifold Euler characteristic of the same order of the space itself. In the paper, in particular, we explain how the Tamanoi equation follows from its verification for actions of (finite) groups on the one-point space. We generalize the statements used for this purpose to analogs of the orbifold Euler characteristic corresponding to finitely generated groups. We show that, for these generalizations, an analog of the Tamanoi equation does not hold in general.
Keywords: finite group actions, orbifold Euler characteristics, Macdonald-type equations.
Funding agency Grant number
HSE Basic Research Program
The paper is an output of a research project implemented as part of the HSE Basic Research Program.
Received: January 14, 2024
Revised: February 17, 2024
Accepted: February 18, 2024
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 325, Pages 111–119
DOI: https://doi.org/10.1134/S0081543824020068
Bibliographic databases:
Document Type: Article
UDC: 515.145.34
Language: Russian
Citation: S. M. Gusein-Zade, “Tamanoi Equation for Orbifold Euler Characteristics Revisited”, Geometry, Topology, and Mathematical Physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 85th birthday, Trudy Mat. Inst. Steklova, 325, Steklov Mathematical Institute of RAS, Moscow, 2024, 119–128; Proc. Steklov Inst. Math., 325 (2024), 111–119
Citation in format AMSBIB
\Bibitem{Gus24}
\by S.~M.~Gusein-Zade
\paper Tamanoi Equation for Orbifold Euler Characteristics Revisited
\inbook Geometry, Topology, and Mathematical Physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 85th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 325
\pages 119--128
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4393}
\crossref{https://doi.org/10.4213/tm4393}
\zmath{https://zbmath.org/?q=an:07939064}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 325
\pages 111--119
\crossref{https://doi.org/10.1134/S0081543824020068}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85207493519}
Linking options:
  • https://www.mathnet.ru/eng/tm4393
  • https://doi.org/10.4213/tm4393
  • https://www.mathnet.ru/eng/tm/v325/p119
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024