Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 324, Pages 124–131
DOI: https://doi.org/10.4213/tm4385
(Mi tm4385)
 

Generalized Coherent States and Random Shift Operators

R. Sh. Kalmetevab, Yu. N. Orlova, V. Zh. Sakbaevabc

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701 Russia
c Institute of Mathematics with Computing Centre – Subdivision of the Ufa Federal Research Centre of Russian Academy of Sciences, ul. Chernyshevskogo 112, Ufa, 450008 Russia
References:
Abstract: We study the Chernoff averages for random generalized shift operators in the case of noncanonical commutation relations between creation and annihilation operators. We introduce the concepts of shift-dual ladder operators and generalized shift operators. As an example, we consider a one-parameter family of commutation relations for which generalized shift operators are unitary and satisfy the semigroup property on straight lines passing through the origin. For this family, we prove that the sequence of expectations of Feynman–Chernoff iterations of random shift operators converges to a limit strongly continuous semigroup.
Keywords: generalized coherent states, Feynman–Chernoff iterations, random operators, strongly continuous one-parameter semigroups.
Received: September 1, 2023
Revised: October 2, 2023
Accepted: October 30, 2023
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 324, Pages 115–122
DOI: https://doi.org/10.1134/S0081543824010127
Bibliographic databases:
Document Type: Article
UDC: 517.983
Language: Russian
Citation: R. Sh. Kalmetev, Yu. N. Orlov, V. Zh. Sakbaev, “Generalized Coherent States and Random Shift Operators”, Noncommutative Analysis and Quantum Information Theory, Collected papers. Dedicated to Academician Alexander Semenovich Holevo on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 324, Steklov Math. Inst., Moscow, 2024, 124–131; Proc. Steklov Inst. Math., 324 (2024), 115–122
Citation in format AMSBIB
\Bibitem{KalOrlSak24}
\by R.~Sh.~Kalmetev, Yu.~N.~Orlov, V.~Zh.~Sakbaev
\paper Generalized Coherent States and Random Shift Operators
\inbook Noncommutative Analysis and Quantum Information Theory
\bookinfo Collected papers. Dedicated to Academician Alexander Semenovich Holevo on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 324
\pages 124--131
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4385}
\crossref{https://doi.org/10.4213/tm4385}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767953}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 324
\pages 115--122
\crossref{https://doi.org/10.1134/S0081543824010127}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85198116946}
Linking options:
  • https://www.mathnet.ru/eng/tm4385
  • https://doi.org/10.4213/tm4385
  • https://www.mathnet.ru/eng/tm/v324/p124
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :1
    References:19
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024