Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 324, Pages 51–59
DOI: https://doi.org/10.4213/tm4378
(Mi tm4378)
 

Continuity of Operator Functions in the Topology of Local Convergence in Measure

A. M. Bikchentaev, O. E. Tikhonov

N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kremlevskaya ul. 35, Kazan, 420008 Russia
References:
Abstract: Let a von Neumann algebra $\mathcal M$ of operators act on a Hilbert space $\mathcal {H}$, and let $\tau $ be a faithful normal semifinite trace on $\mathcal M$. Let $t_{\tau \textup {l}}$ be the topology of $\tau $-local convergence in measure on the *-algebra $S(\mathcal M,\tau )$ of all $\tau $-measurable operators. We prove the $t_{\tau \textup {l}}$-continuity of the involution on the set of all normal operators in $S(\mathcal M,\tau )$, investigate the $t_{\tau \textup {l}}$-continuity of operator functions on $S(\mathcal M,\tau )$, and show that the map $A\mapsto |A|$ is $t_{\tau \textup {l}}$-continuous on the set of all partial isometries in $\mathcal M$.
Keywords: Hilbert space, linear operator, von Neumann algebra, normal trace, measurable operator, local convergence in measure, continuity of operator functions.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation
This work was supported within the Strategic Academic Leadership Program of the Kazan Federal University “Priority-2030.”
Received: June 20, 2023
Revised: October 5, 2023
Accepted: October 6, 2023
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 324, Pages 44–52
DOI: https://doi.org/10.1134/S008154382401005X
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. M. Bikchentaev, O. E. Tikhonov, “Continuity of Operator Functions in the Topology of Local Convergence in Measure”, Noncommutative Analysis and Quantum Information Theory, Collected papers. Dedicated to Academician Alexander Semenovich Holevo on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 324, Steklov Math. Inst., Moscow, 2024, 51–59; Proc. Steklov Inst. Math., 324 (2024), 44–52
Citation in format AMSBIB
\Bibitem{BikTik24}
\by A.~M.~Bikchentaev, O.~E.~Tikhonov
\paper Continuity of Operator Functions in the Topology of Local Convergence in Measure
\inbook Noncommutative Analysis and Quantum Information Theory
\bookinfo Collected papers. Dedicated to Academician Alexander Semenovich Holevo on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 324
\pages 51--59
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4378}
\crossref{https://doi.org/10.4213/tm4378}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767946}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 324
\pages 44--52
\crossref{https://doi.org/10.1134/S008154382401005X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85198082273}
Linking options:
  • https://www.mathnet.ru/eng/tm4378
  • https://doi.org/10.4213/tm4378
  • https://www.mathnet.ru/eng/tm/v324/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :65
    References:14
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024