Abstract:
Let a von Neumann algebra $\mathcal M$ of operators act on a Hilbert space $\mathcal {H}$, and let $\tau $ be a faithful normal semifinite trace on $\mathcal M$. Let $t_{\tau \textup {l}}$ be the topology of $\tau $-local convergence in measure on the *-algebra $S(\mathcal M,\tau )$ of all $\tau $-measurable operators. We prove the $t_{\tau \textup {l}}$-continuity of the involution on the set of all normal operators in $S(\mathcal M,\tau )$, investigate the $t_{\tau \textup {l}}$-continuity of operator functions on $S(\mathcal M,\tau )$, and show that the map $A\mapsto |A|$ is $t_{\tau \textup {l}}$-continuous on the set of all partial isometries in $\mathcal M$.
Keywords:Hilbert space, linear operator, von Neumann algebra, normal trace, measurable operator, local convergence in measure, continuity of operator functions.
Citation:
A. M. Bikchentaev, O. E. Tikhonov, “Continuity of Operator Functions in the Topology of Local Convergence in Measure”, Noncommutative Analysis and Quantum Information Theory, Collected papers. Dedicated to Academician Alexander Semenovich Holevo on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 324, Steklov Math. Inst., Moscow, 2024, 51–59; Proc. Steklov Inst. Math., 324 (2024), 44–52
\Bibitem{BikTik24}
\by A.~M.~Bikchentaev, O.~E.~Tikhonov
\paper Continuity of Operator Functions in the Topology of Local Convergence in Measure
\inbook Noncommutative Analysis and Quantum Information Theory
\bookinfo Collected papers. Dedicated to Academician Alexander Semenovich Holevo on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 324
\pages 51--59
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4378}
\crossref{https://doi.org/10.4213/tm4378}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767946}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 324
\pages 44--52
\crossref{https://doi.org/10.1134/S008154382401005X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85198082273}