Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 323, Pages 107–126
DOI: https://doi.org/10.4213/tm4362
(Mi tm4362)
 

This article is cited in 2 scientific papers (total in 2 papers)

Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces

Ryan Gibara, Nageswari Shanmugalingam

Department of Mathematical Sciences, University of Cincinnati, P.O. Box 210025, Cincinnati, OH 45221-0025, USA
References:
Abstract: In this paper we fix $1\le p<\infty $ and consider $(\Omega ,d,\mu )$ to be an unbounded, locally compact, non-complete metric measure space equipped with a doubling measure $\mu $ supporting a $p$-Poincaré inequality such that $\Omega $ is a uniform domain in its completion $\overline \Omega $. We realize the trace of functions in the Dirichlet–Sobolev space $D^{1,p}(\Omega )$ on the boundary $\partial \Omega $ as functions in the homogeneous Besov space $HB^\alpha _{p,p}(\partial \Omega )$ for suitable $\alpha $; here, $\partial \Omega $ is equipped with a non-atomic Borel regular measure $\nu $. We show that if $\nu $ satisfies a $\theta $-codimensional condition with respect to $\mu $ for some $0<\theta <p$, then there is a bounded linear trace operator $T:D^{1,p}(\Omega )\to HB^{1-\theta /p}(\partial \Omega )$ and a bounded linear extension operator $E:HB^{1-\theta /p}(\partial \Omega )\to D^{1,p}(\Omega )$ that is a right-inverse of $T$.
Keywords: Besov spaces, traces, Newton–Sobolev spaces, unbounded uniform domain, doubling measure, Poincaré inequality.
Funding agency Grant number
National Science Foundation 2054960
The second author's work is partially supported by the NSF (USA) grant DMS #2054960.
Received: November 9, 2022
Revised: July 10, 2023
Accepted: August 3, 2023
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 323, Pages 101–119
DOI: https://doi.org/10.1134/S0081543823050061
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: Ryan Gibara, Nageswari Shanmugalingam, “Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces”, Theory of Functions of Several Real Variables and Its Applications, Collected papers. Dedicated to Oleg Vladimirovich Besov on the occasion of his 90th birthday, Trudy Mat. Inst. Steklova, 323, Steklov Mathematical Institute of RAS, Moscow, 2023, 107–126; Proc. Steklov Inst. Math., 323 (2023), 101–119
Citation in format AMSBIB
\Bibitem{GibSha23}
\by Ryan~Gibara, Nageswari~Shanmugalingam
\paper Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces
\inbook Theory of Functions of Several Real Variables and Its Applications
\bookinfo Collected papers. Dedicated to Oleg Vladimirovich Besov on the occasion of his 90th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 323
\pages 107--126
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4362}
\crossref{https://doi.org/10.4213/tm4362}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 323
\pages 101--119
\crossref{https://doi.org/10.1134/S0081543823050061}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85178453576}
Linking options:
  • https://www.mathnet.ru/eng/tm4362
  • https://doi.org/10.4213/tm4362
  • https://www.mathnet.ru/eng/tm/v323/p107
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :3
    References:28
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024