Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 323, Pages 196–203
DOI: https://doi.org/10.4213/tm4358
(Mi tm4358)
 

On the Best Recovery of a Family of Operators on the Manifold $\mathbb R^n\times \mathbb T^m$

G. G. Magaril-Il'yaevabc, E. O. Sivkovacd

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia
b Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, str. 1, Moscow, 127051 Russia
c Southern Mathematical Institute, Vladikavkaz Scientific Center of Russian Academy of Sciences, ul. Vatutina 53, Vladikavkaz, 362027 Russia
d National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya ul. 14, Moscow, 111250 Russia
References:
Abstract: Given a one-parameter family of operators on the manifold $\mathbb R^n\times \mathbb T^m$, we solve the problem of the best recovery of an operator for a given value of the parameter from inaccurate data on the operators for other values of the parameter from a certain compact set. We construct a family of best recovery methods. As a consequence, we obtain families of best recovery methods for the solutions of the heat equation and the Dirichlet problem for a half-space.
Keywords: best recovery, optimal method, Fourier transform, extremum problem.
Funding agency
This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.
Received: May 10, 2023
Revised: June 20, 2023
Accepted: July 14, 2023
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 323, Pages 188–196
DOI: https://doi.org/10.1134/S0081543823050115
Bibliographic databases:
Document Type: Article
UDC: 517.984.64
Language: Russian
Citation: G. G. Magaril-Il'yaev, E. O. Sivkova, “On the Best Recovery of a Family of Operators on the Manifold $\mathbb R^n\times \mathbb T^m$”, Theory of Functions of Several Real Variables and Its Applications, Collected papers. Dedicated to Oleg Vladimirovich Besov on the occasion of his 90th birthday, Trudy Mat. Inst. Steklova, 323, Steklov Mathematical Institute of RAS, Moscow, 2023, 196–203; Proc. Steklov Inst. Math., 323 (2023), 188–196
Citation in format AMSBIB
\Bibitem{MagSiv23}
\by G.~G.~Magaril-Il'yaev, E.~O.~Sivkova
\paper On the Best Recovery of a Family of Operators on the Manifold $\mathbb R^n\times \mathbb T^m$
\inbook Theory of Functions of Several Real Variables and Its Applications
\bookinfo Collected papers. Dedicated to Oleg Vladimirovich Besov on the occasion of his 90th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 323
\pages 196--203
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4358}
\crossref{https://doi.org/10.4213/tm4358}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 323
\pages 188--196
\crossref{https://doi.org/10.1134/S0081543823050115}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85186919178}
Linking options:
  • https://www.mathnet.ru/eng/tm4358
  • https://doi.org/10.4213/tm4358
  • https://www.mathnet.ru/eng/tm/v323/p196
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :2
    References:18
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024