Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 323, Pages 17–52
DOI: https://doi.org/10.4213/tm4356
(Mi tm4356)
 

Hierarchical Schrödinger Operators with Singular Potentials

Alexander Bendikova, Alexander Grigor'yanb, Stanislav Molchanovcd

a Institute of Mathematics, Wroclaw University, 50-384 Wroclaw, Poland
b Department of Mathematics, University of Bielefeld, 33501 Bielefeld, Germany
c Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
d National Research University Higher School of Economics, Moscow, 109028 Russia
References:
Abstract: We consider the operator $H=L+V$ that is a perturbation of the Taibleson–Vladimirov operator $L=\mathfrak {D}^\alpha $ by a potential $V(x)=b\|x\|^{-\alpha }$, where $\alpha >0$ and $b\geq b_*$. We prove that the operator $H$ is closable and its minimal closure is a nonnegative definite self-adjoint operator (where the critical value $b_*$ depends on $\alpha $). While the operator $H$ is nonnegative definite, the potential $V(x)$ may well take negative values as $b_*<0$ for all $0<\alpha <1$. The equation $Hu=v$ admits a Green function $g_H(x,y)$, that is, the integral kernel of the operator $H^{-1}$. We obtain sharp lower and upper bounds on the ratio of the Green functions $g_H(x,y)$ and $g_L(x,y)$.
Keywords: ultrametric space, $p$-adic numbers, Dyson model, hierarchical Laplacian, hierarchical Schrödinger operator, Vladimirov operator.
Funding agency Grant number
Deutsche Forschungsgemeinschaft SFB 1283/2 2021 - 317210226
Russian Science Foundation 17-11-01098
A.B. and A.G. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant no. SFB 1283/2 2021 – 317210226. The work of S.M. was supported by the Russian Science Foundation under grant no. 17-11-01098, https://rscf.ru/en/project/17-11-01098/.
Received: November 1, 2022
Revised: July 25, 2023
Accepted: July 27, 2023
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 323, Pages 12–46
DOI: https://doi.org/10.1134/S0081543823050024
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: Alexander Bendikov, Alexander Grigor'yan, Stanislav Molchanov, “Hierarchical Schrödinger Operators with Singular Potentials”, Theory of Functions of Several Real Variables and Its Applications, Collected papers. Dedicated to Oleg Vladimirovich Besov on the occasion of his 90th birthday, Trudy Mat. Inst. Steklova, 323, Steklov Mathematical Institute of RAS, Moscow, 2023, 17–52; Proc. Steklov Inst. Math., 323 (2023), 12–46
Citation in format AMSBIB
\Bibitem{BenGriMol23}
\by Alexander~Bendikov, Alexander~Grigor'yan, Stanislav~Molchanov
\paper Hierarchical Schr\"odinger Operators with Singular Potentials
\inbook Theory of Functions of Several Real Variables and Its Applications
\bookinfo Collected papers. Dedicated to Oleg Vladimirovich Besov on the occasion of his 90th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 323
\pages 17--52
\publ Steklov Mathematical Institute of RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4356}
\crossref{https://doi.org/10.4213/tm4356}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 323
\pages 12--46
\crossref{https://doi.org/10.1134/S0081543823050024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85186930131}
Linking options:
  • https://www.mathnet.ru/eng/tm4356
  • https://doi.org/10.4213/tm4356
  • https://www.mathnet.ru/eng/tm/v323/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024