Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Volume 324, Pages 109–123
DOI: https://doi.org/10.4213/tm4351
(Mi tm4351)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Some Properties of the Fractional Derivative of the Brownian Local Time

I. A. Ibragimovab, N. V. Smorodinaacb, M. M. Faddeevb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, St. Petersburg, 191023 Russia
b St. Petersburg State University, 14 line 29B, Vasilyevsky Island, St. Petersburg, 199178 Russia
c Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: We study the properties of the fractional derivative $D_\alpha l(t,x)$ of order $\alpha <1/2$ of the Brownian local time $l(t,x)$ with respect to the variable $x$. This derivative is understood as the convolution of the local time with the generalized function $|x|^{-1-\alpha }$. We show that $D_\alpha l(t,x)$ appears naturally in Itô's formula for the process $|w(t)|^{1-\alpha }$. Using the martingale technique, we also study the limit behavior of $D_\alpha l(t,x)$ as $t\to \infty $.
Keywords: stochastic processes, local time, fractional derivative.
Funding agency Grant number
Russian Science Foundation 23-11-00375
The work of N. V. Smorodina (she wrote Sections 1 and 2) was supported by the Russian Science Foundation under grant no. 23-11-00375, https://rscf.ru/en/project/23-11-00375/, and performed at the Steklov Mathematical Institute of Russian Academy of Sciences. All results of the paper were obtained in the process of joint work of the authors.
Received: April 25, 2023
Revised: July 3, 2023
Accepted: July 10, 2023
English version:
Proceedings of the Steklov Institute of Mathematics, 2024, Volume 324, Pages 100–114
DOI: https://doi.org/10.1134/S0081543824010115
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “On Some Properties of the Fractional Derivative of the Brownian Local Time”, Noncommutative Analysis and Quantum Information Theory, Collected papers. Dedicated to Academician Alexander Semenovich Holevo on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 324, Steklov Math. Inst., Moscow, 2024, 109–123; Proc. Steklov Inst. Math., 324 (2024), 100–114
Citation in format AMSBIB
\Bibitem{IbrSmoFad24}
\by I.~A.~Ibragimov, N.~V.~Smorodina, M.~M.~Faddeev
\paper On Some Properties of the Fractional Derivative of the Brownian Local Time
\inbook Noncommutative Analysis and Quantum Information Theory
\bookinfo Collected papers. Dedicated to Academician Alexander Semenovich Holevo on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2024
\vol 324
\pages 109--123
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4351}
\crossref{https://doi.org/10.4213/tm4351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4767952}
\zmath{https://zbmath.org/?q=an:07881430}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2024
\vol 324
\pages 100--114
\crossref{https://doi.org/10.1134/S0081543824010115}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85198056871}
Linking options:
  • https://www.mathnet.ru/eng/tm4351
  • https://doi.org/10.4213/tm4351
  • https://www.mathnet.ru/eng/tm/v324/p109
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :2
    References:19
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024