Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 322, Pages 157–166
DOI: https://doi.org/10.4213/tm4348
(Mi tm4348)
 

This article is cited in 1 scientific paper (total in 1 paper)

Longitudinal–Torsional Waves in Nonlinear Elastic Rods

A. G. Kulikovskii, A. P. Chugainova

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (239 kB) Citations (1)
References:
Abstract: Previously, we have obtained a system of fourth-order hyperbolic equations describing long nonlinear small-amplitude longitudinal–torsional waves propagating along an elastic rod. Waves of two types, fast and slow, propagate in each direction along the rod. In the present paper, based on this system of equations, we derive a second-order hyperbolic system that describes longitudinal–torsional waves propagating in one direction along the rod at close velocities. The waves propagating in the opposite direction along the rod are assumed to have a negligible amplitude. We show that the variation of quantities in simple and shock waves described by the system of second-order equations obtained in this paper exactly coincides with the variation of the same quantities in the corresponding waves described by the original system of fourth-order equations, and the velocities of these waves are close. We also analyze the variation of quantities in simple (Riemann) waves and the overturning conditions for these waves.
Keywords: longitudinal–torsional waves, Riemann waves, wave overturning conditions.
Funding agency Grant number
Russian Science Foundation 20-11-20141
This work was supported by the Russian Science Foundation under grant no. 20-11-20141, https://rscf.ru/en/project/20-11-20141/.
Received: March 30, 2023
Revised: April 18, 2023
Accepted: May 20, 2023
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 322, Pages 151–160
DOI: https://doi.org/10.1134/S0081543823040132
Bibliographic databases:
Document Type: Article
UDC: 51-72
Language: Russian
Citation: A. G. Kulikovskii, A. P. Chugainova, “Longitudinal–Torsional Waves in Nonlinear Elastic Rods”, Modern Methods of Mechanics, Collected papers. On the occasion of the 90th birthday of Academician Andrei Gennad'evich Kulikovskii, Trudy Mat. Inst. Steklova, 322, Steklov Math. Inst., Moscow, 2023, 157–166; Proc. Steklov Inst. Math., 322 (2023), 151–160
Citation in format AMSBIB
\Bibitem{KulChu23}
\by A.~G.~Kulikovskii, A.~P.~Chugainova
\paper Longitudinal--Torsional Waves in Nonlinear Elastic Rods
\inbook Modern Methods of Mechanics
\bookinfo Collected papers. On the occasion of the 90th birthday of Academician Andrei Gennad'evich Kulikovskii
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 322
\pages 157--166
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4348}
\crossref{https://doi.org/10.4213/tm4348}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4677609}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 322
\pages 151--160
\crossref{https://doi.org/10.1134/S0081543823040132}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85176110060}
Linking options:
  • https://www.mathnet.ru/eng/tm4348
  • https://doi.org/10.4213/tm4348
  • https://www.mathnet.ru/eng/tm/v322/p157
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :20
    References:25
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024