Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 322, Pages 180–194
DOI: https://doi.org/10.4213/tm4336
(Mi tm4336)
 

This article is cited in 1 scientific paper (total in 1 paper)

Exact Solutions of Second-Grade Fluid Equations

A. G. Petrovaab, V. V. Pukhnachevbc, O. A. Frolovskayabc

a Altai State University, pr. Lenina 61, Barnaul, 656049 Russia
b Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, pr. Lavrent'eva 15, Novosibirsk, 630090 Russia
c Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
Full-text PDF (435 kB) Citations (1)
References:
Abstract: The second-grade fluid equations describe the motion of relaxing fluids such as aqueous solutions of polymers. The existence and uniqueness of solutions to the initial–boundary value problems for these equations were studied by D. Cioranescu, V. Girault, C. Le Roux, A. Tani, G. P. Galdi, and others. However, their studies do not contain information about the qualitative properties of solutions of these equations. Such information can be obtained by analyzing their exact solutions, which is the main goal of this work. We study layered flows and a model problem with a free boundary, construct an analog of T. Kármán's solution, which describes the stationary motion of a second-grade fluid in a half-space induced by the rotation of the plane bounding it, and propose a generalization of V. A. Steklov's solution of the problem on unsteady helical flows of a Newtonian fluid to the case of a second-grade fluid.
Keywords: second-grade fluid, free boundary problems, layered flows, boundary layer, helical motions.
Received: December 1, 2022
Revised: March 12, 2023
Accepted: March 20, 2023
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 322, Pages 173–187
DOI: https://doi.org/10.1134/S0081543823040156
Bibliographic databases:
Document Type: Article
UDC: 532.5+517.95
Language: Russian
Citation: A. G. Petrova, V. V. Pukhnachev, O. A. Frolovskaya, “Exact Solutions of Second-Grade Fluid Equations”, Modern Methods of Mechanics, Collected papers. On the occasion of the 90th birthday of Academician Andrei Gennad'evich Kulikovskii, Trudy Mat. Inst. Steklova, 322, Steklov Math. Inst., Moscow, 2023, 180–194; Proc. Steklov Inst. Math., 322 (2023), 173–187
Citation in format AMSBIB
\Bibitem{PetPukFro23}
\by A.~G.~Petrova, V.~V.~Pukhnachev, O.~A.~Frolovskaya
\paper Exact Solutions of Second-Grade Fluid Equations
\inbook Modern Methods of Mechanics
\bookinfo Collected papers. On the occasion of the 90th birthday of Academician Andrei Gennad'evich Kulikovskii
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 322
\pages 180--194
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4336}
\crossref{https://doi.org/10.4213/tm4336}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 322
\pages 173--187
\crossref{https://doi.org/10.1134/S0081543823040156}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85180234830}
Linking options:
  • https://www.mathnet.ru/eng/tm4336
  • https://doi.org/10.4213/tm4336
  • https://www.mathnet.ru/eng/tm/v322/p180
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024