This article is cited in 4 scientific papers (total in 4 papers)
The Agrachev–Barilari–Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$
Abstract:
Using a generalization of the Agrachev–Barilari–Boscain method for proving the Rashevskii–Chow theorem, we estimate the minimum number $\mathcal {N}_{G_{3,3}}$ of segments of horizontal broken lines joining two arbitrary points on the six-dimensional two-step canonical Carnot group $G_{3,3}$ with corank $3$ horizontal distribution. We prove that $\mathcal {N}_{G_{3,3}}=3$.
This work was supported by the Mathematical Center in Akademgorodok (agreement no. 075-15-2022-281 of April 5, 2022, with the Ministry of Science and Higher Education of the Russian Federation).
Citation:
A. V. Greshnov, “The Agrachev–Barilari–Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$”, Optimal Control and Dynamical Systems, Collected papers. On the occasion of the 95th birthday of Academician Revaz Valerianovich Gamkrelidze, Trudy Mat. Inst. Steklova, 321, Steklov Math. Inst., Moscow, 2023, 108–117; Proc. Steklov Inst. Math., 321 (2023), 97–106
\Bibitem{Gre23}
\by A.~V.~Greshnov
\paper The Agrachev--Barilari--Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$
\inbook Optimal Control and Dynamical Systems
\bookinfo Collected papers. On the occasion of the 95th birthday of Academician Revaz Valerianovich Gamkrelidze
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 321
\pages 108--117
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4320}
\crossref{https://doi.org/10.4213/tm4320}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 321
\pages 97--106
\crossref{https://doi.org/10.1134/S0081543823020074}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85171174782}
Linking options:
https://www.mathnet.ru/eng/tm4320
https://doi.org/10.4213/tm4320
https://www.mathnet.ru/eng/tm/v321/p108
This publication is cited in the following 4 articles: