Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 321, Pages 77–93
DOI: https://doi.org/10.4213/tm4316
(Mi tm4316)
 

This article is cited in 3 scientific papers (total in 3 papers)

Output Feedback Stabilization of Non-uniformly Observable Systems

Lucas Brivadisa, Jean-Paul Gauthierb, Ludovic Sacchellic

a Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France
b Université de Toulon, Aix Marseille Univ, CNRS, LIS, Toulon, France
c Inria, Université Côte d'Azur, CNRS, LJAD, McTAO team, Sophia Antipolis, France
Full-text PDF (329 kB) Citations (3)
References:
Abstract: Stabilizing the state of a system relying only on the knowledge of a measured output is a classical control theory problem. Designing a stable closed loop based on an observer design requires that some necessary information on the state can be accessed through the output trajectory. For non-linear systems, this may not be true for all controls. The existence of singular controls (from the point of view of observability) is even generic in many cases. Then, the design of asymptotically stable closed loops becomes a challenge that remains to be fully answered. Using various examples, we propose to review some strategies that showed to be efficient in tackling the difficulties posed by non-uniform observability (i.e., existence of singular controls) in the context of dynamic output feedback stabilization.
Received: February 24, 2022
Revised: July 5, 2022
Accepted: January 9, 2023
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 321, Pages 69–83
DOI: https://doi.org/10.1134/S0081543823020050
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: Lucas Brivadis, Jean-Paul Gauthier, Ludovic Sacchelli, “Output Feedback Stabilization of Non-uniformly Observable Systems”, Optimal Control and Dynamical Systems, Collected papers. On the occasion of the 95th birthday of Academician Revaz Valerianovich Gamkrelidze, Trudy Mat. Inst. Steklova, 321, Steklov Math. Inst., Moscow, 2023, 77–93; Proc. Steklov Inst. Math., 321 (2023), 69–83
Citation in format AMSBIB
\Bibitem{BriGauSac23}
\by Lucas~Brivadis, Jean-Paul~Gauthier, Ludovic~Sacchelli
\paper Output Feedback Stabilization of Non-uniformly Observable Systems
\inbook Optimal Control and Dynamical Systems
\bookinfo Collected papers. On the occasion of the 95th birthday of Academician Revaz Valerianovich Gamkrelidze
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 321
\pages 77--93
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4316}
\crossref{https://doi.org/10.4213/tm4316}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 321
\pages 69--83
\crossref{https://doi.org/10.1134/S0081543823020050}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85170853135}
Linking options:
  • https://www.mathnet.ru/eng/tm4316
  • https://doi.org/10.4213/tm4316
  • https://www.mathnet.ru/eng/tm/v321/p77
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:121
    Full-text PDF :2
    References:17
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024