Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 322, Pages 266–281
DOI: https://doi.org/10.4213/tm4314
(Mi tm4314)
 

This article is cited in 1 scientific paper (total in 1 paper)

Structures of Classical and Special Discontinuities for the Generalized Korteweg–de Vries–Burgers Equation in the Case of a Flux Function with Four Inflection Points

V. A. Shargatova, A. P. Chugainovab, A. M. Tomashevaa

a National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, 115409 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (383 kB) Citations (1)
References:
Abstract: We study the structure of the set of traveling wave solutions for the generalized Korteweg–de Vries–Burgers equation with the flux function having four inflection points. In this case there arise two monotone structures of stable special discontinuities propagating at different velocities (such a situation has not been described earlier in the literature). Both structures of special discontinuities are linearly stable. To analyze the linear stability of the structures of classical and special discontinuities, we apply a method based on the use of the Evans function. We also propose a conjecture that establishes the admissibility of classical discontinuities in the case when there are two stable special discontinuities.
Keywords: Hopf equation, Korteweg–de Vries–Burgers equation, singular discontinuities, Evans function.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00071
This work is supported by the Russian Foundation for Basic Research, project no. 20-01-00071.
Received: December 12, 2022
Revised: December 12, 2022
Accepted: December 19, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 322, Pages 257–272
DOI: https://doi.org/10.1134/S0081543823040211
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: V. A. Shargatov, A. P. Chugainova, A. M. Tomasheva, “Structures of Classical and Special Discontinuities for the Generalized Korteweg–de Vries–Burgers Equation in the Case of a Flux Function with Four Inflection Points”, Modern Methods of Mechanics, Collected papers. On the occasion of the 90th birthday of Academician Andrei Gennad'evich Kulikovskii, Trudy Mat. Inst. Steklova, 322, Steklov Math. Inst., Moscow, 2023, 266–281; Proc. Steklov Inst. Math., 322 (2023), 257–272
Citation in format AMSBIB
\Bibitem{ShaChuTom23}
\by V.~A.~Shargatov, A.~P.~Chugainova, A.~M.~Tomasheva
\paper Structures of Classical and Special Discontinuities for the Generalized Korteweg--de Vries--Burgers Equation in the Case of a Flux Function with Four Inflection Points
\inbook Modern Methods of Mechanics
\bookinfo Collected papers. On the occasion of the 90th birthday of Academician Andrei Gennad'evich Kulikovskii
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 322
\pages 266--281
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4314}
\crossref{https://doi.org/10.4213/tm4314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4677610}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 322
\pages 257--272
\crossref{https://doi.org/10.1134/S0081543823040211}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85180171808}
Linking options:
  • https://www.mathnet.ru/eng/tm4314
  • https://doi.org/10.4213/tm4314
  • https://www.mathnet.ru/eng/tm/v322/p266
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024