Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2023, Volume 320, Pages 311–323
DOI: https://doi.org/10.4213/tm4311
(Mi tm4311)
 

Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$

Nikolay A. Tyurinab

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia
References:
Abstract: In previous papers we proposed a construction of the moduli space of $D$-exact Lagrangian submanifolds in algebraic varieties with respect to a very ample divisor. The points of the moduli space are Hamiltonian equivalence classes of Lagrangian submanifolds in the complements $X\setminus D$, where $D$ is a divisor from a complete linear system; by the very definition this moduli space is a covering of an open subset in the projective space $|D|$. We showed that these moduli spaces are smooth and Kähler, and we proposed a way to distinguish, in such a moduli space, certain stable components whose main supposed property is to be algebraic. In the present paper we find the stable component of the moduli space of Lagrangian spheres in the flag variety with an ample divisor equal to half the anticanonical bundle, and show that this component is an algebraic variety itself.
Funding agency Grant number
Russian Science Foundation 19-11-00164
The work was supported by the Russian Science Foundation under grant no. 19-11-00164, https://rscf.ru/project/19-11-00164/, and performed at Steklov Mathematical Institute of Russian Academy of Sciences.
Received: December 21, 2021
Revised: November 11, 2022
Accepted: December 1, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2023, Volume 320, Pages 290–301
DOI: https://doi.org/10.1134/S0081543823010145
Bibliographic databases:
Document Type: Article
UDC: 512.7+514.7+514.8
Language: Russian
Citation: Nikolay A. Tyurin, “Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$”, Algebra and Arithmetic, Algebraic, and Complex Geometry, Collected papers. In memory of Academician Alexey Nikolaevich Parshin, Trudy Mat. Inst. Steklova, 320, Steklov Math. Inst., Moscow, 2023, 311–323; Proc. Steklov Inst. Math., 320 (2023), 290–301
Citation in format AMSBIB
\Bibitem{Tyu23}
\by Nikolay~A.~Tyurin
\paper Example of a Moduli Space of $D$-Exact Lagrangian Submanifolds: Spheres in the Flag Variety for $\mathbb C^3$
\inbook Algebra and Arithmetic, Algebraic, and Complex Geometry
\bookinfo Collected papers. In memory of Academician Alexey Nikolaevich Parshin
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 320
\pages 311--323
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4311}
\crossref{https://doi.org/10.4213/tm4311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582623}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 320
\pages 290--301
\crossref{https://doi.org/10.1134/S0081543823010145}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85161040159}
Linking options:
  • https://www.mathnet.ru/eng/tm4311
  • https://doi.org/10.4213/tm4311
  • https://www.mathnet.ru/eng/tm/v320/p311
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:152
    Full-text PDF :11
    References:22
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024