Abstract:
The paper is devoted to establishing necessary and sufficient conditions for the local quasilinearizability of nondegenerate hyperbolic Monge–Ampère systems.
This work was supported by the Russian Science Foundation under grant no. 19-11-00223,
https://rscf.ru/en/project/19-11-00223/, and performed at Lomonosov Moscow State University.
Citation:
D. V. Tunitsky, “On the Quasilinearizability of Hyperbolic Monge–Ampère Systems”, Optimal Control and Dynamical Systems, Collected papers. On the occasion of the 95th birthday of Academician Revaz Valerianovich Gamkrelidze, Trudy Mat. Inst. Steklova, 321, Steklov Math. Inst., Moscow, 2023, 286–291; Proc. Steklov Inst. Math., 321 (2023), 269–275
\Bibitem{Tun23}
\by D.~V.~Tunitsky
\paper On the Quasilinearizability of Hyperbolic Monge--Amp\`ere Systems
\inbook Optimal Control and Dynamical Systems
\bookinfo Collected papers. On the occasion of the 95th birthday of Academician Revaz Valerianovich Gamkrelidze
\serial Trudy Mat. Inst. Steklova
\yr 2023
\vol 321
\pages 286--291
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4308}
\crossref{https://doi.org/10.4213/tm4308}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4643646}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2023
\vol 321
\pages 269--275
\crossref{https://doi.org/10.1134/S0081543823020189}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85170847511}
Linking options:
https://www.mathnet.ru/eng/tm4308
https://doi.org/10.4213/tm4308
https://www.mathnet.ru/eng/tm/v321/p286
This publication is cited in the following 1 articles:
Zenggui Wang, Hui Xu, Minyuan Liu, “A lower bound estimate of solutions to the Cauchy problems for a hyperbolic Monge–Ampère equation”, Math Methods in App Sciences, 2024