Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 317, Pages 132–156
DOI: https://doi.org/10.4213/tm4294
(Mi tm4294)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Homotopy Decomposition for the Quotient of a Moment–Angle Complex and Its Applications

Ivan Yu. Limonchenko, Grigory D. Solomadin

National Research University Higher School of Economics, Pokrovskii bul. 11, Moscow, 109028 Russia
Full-text PDF (345 kB) Citations (1)
References:
Abstract: We prove that the quotient of any real or complex moment–angle complex by any closed subgroup in the naturally acting compact torus on it is equivariantly homotopy equivalent to the homotopy colimit of a certain toric diagram. For any quotient we prove an equivariant homeomorphism generalizing the well-known Davis–Januszkiewicz construction for quasitoric manifolds and small covers. We deduce the formality of the corresponding Borel construction space under the natural assumption on the group action in the complex case, which leads to a new description of the equivariant cohomology for the quotients by any coordinate subgroups. We prove the weak toral rank conjecture for the partial quotient of a moment–angle complex by the diagonal circle action. We also give an explicit construction of partial quotients by circle actions to show that their integral cohomology may have arbitrary torsion.
Keywords: homotopy colimit, toric diagram, moment–angle complex, quasitoric manifold, partial quotient, Buchstaber number.
Funding agency Grant number
HSE Basic Research Program
The work was performed within the framework of the HSE University Basic Research Program.
Received: March 15, 2022
Revised: June 15, 2022
Accepted: June 17, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 317, Pages 117–140
DOI: https://doi.org/10.1134/S0081543822020067
Bibliographic databases:
Document Type: Article
UDC: 515.145+515.143.2
MSC: 57S12, 13F55, 55N91
Language: Russian
Citation: Ivan Yu. Limonchenko, Grigory D. Solomadin, “On the Homotopy Decomposition for the Quotient of a Moment–Angle Complex and Its Applications”, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Collected papers, Trudy Mat. Inst. Steklova, 317, Steklov Math. Inst., М., 2022, 132–156; Proc. Steklov Inst. Math., 317 (2022), 117–140
Citation in format AMSBIB
\Bibitem{LimSol22}
\by Ivan~Yu.~Limonchenko, Grigory~D.~Solomadin
\paper On the Homotopy Decomposition for the Quotient of a Moment--Angle Complex and Its Applications
\inbook Toric Topology, Group Actions, Geometry, and Combinatorics. Part~1
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 317
\pages 132--156
\publ Steklov Math. Inst.
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm4294}
\crossref{https://doi.org/10.4213/tm4294}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538826}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 317
\pages 117--140
\crossref{https://doi.org/10.1134/S0081543822020067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85141971166}
Linking options:
  • https://www.mathnet.ru/eng/tm4294
  • https://doi.org/10.4213/tm4294
  • https://www.mathnet.ru/eng/tm/v317/p132
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :43
    References:49
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024