Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 317, Pages 198–209
DOI: https://doi.org/10.4213/tm4285
(Mi tm4285)
 

Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces

Suyoung Choia, Mathieu Valléeb

a Department of Mathematics, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Korea
b Université de Rennes 1, Institut de recherche mathématique de Rennes (IRMAR) – UMR CNRS 6625, 2 rue du Thabor, F-35000 Rennes, France
References:
Abstract: A real toric manifold XR is said to be cohomologically rigid over Z2 if every real toric manifold whose Z2-cohomology ring is isomorphic to that of XR is actually diffeomorphic to XR. Not all real toric manifolds are cohomologically rigid over Z2. In this paper, we prove that the connected sum of three real projective spaces is cohomologically rigid over Z2.
Keywords: real toric variety, real toric manifold, cohomological rigidity.
Funding agency Grant number
National Research Foundation of Korea NRF-2019R1A2C2010989
The work was supported by the National Research Foundation of Korea, project no. NRF-2019R1A2C2010989.
Received: March 15, 2022
Revised: May 27, 2022
Accepted: June 8, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 317, Pages 178–188
DOI: https://doi.org/10.1134/S0081543822020109
Bibliographic databases:
Document Type: Article
UDC: 515.14+515.16
Language: Russian
Citation: Suyoung Choi, Mathieu Vallée, “Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces”, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Collected papers, Trudy Mat. Inst. Steklova, 317, Steklov Math. Inst., М., 2022, 198–209; Proc. Steklov Inst. Math., 317 (2022), 178–188
Citation in format AMSBIB
\Bibitem{ChoVal22}
\by Suyoung~Choi, Mathieu~Vall\'ee
\paper Cohomological Rigidity of the Connected Sum of Three Real Projective Spaces
\inbook Toric Topology, Group Actions, Geometry, and Combinatorics. Part~1
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 317
\pages 198--209
\publ Steklov Math. Inst.
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm4285}
\crossref{https://doi.org/10.4213/tm4285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538830}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 317
\pages 178--188
\crossref{https://doi.org/10.1134/S0081543822020109}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85141954478}
Linking options:
  • https://www.mathnet.ru/eng/tm4285
  • https://doi.org/10.4213/tm4285
  • https://www.mathnet.ru/eng/tm/v317/p198
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :30
    References:74
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025